Difference between revisions of "2011 AMC 12B Problems/Problem 12"

Line 18: Line 18:
 
Let's assume that the side length of the octagon is <math>x</math>. The area of the center square is just <math>x^2</math>. The triangles are all <math>45-45-90</math> triangles, with a side length ratio of <math>1:1:\sqrt{2}</math>. The area of each of the <math>4</math> identical triangles is <math>\left(\dfrac{x}{\sqrt{2}}\right)^2\times\dfrac{1}{2}=\dfrac{x^2}{4}</math>, so the total area of all of the triangles is also <math>x^2</math>. Now, we must find the area of all of the 4 identical rectangles. One of the side lengths is <math>x</math> and the other side length is <math>\dfrac{x}{\sqrt{2}}=\dfrac{x\sqrt{2}}{2}</math>, so the area of all of the rectangles is <math>2x^2\sqrt{2}</math>. The ratio of the area of the square to the area of the octagon is <math>\dfrac{x^2}{2x^2+2x^2\sqrt{2}}</math>. Cancelling <math>x^2</math> from the fraction, the ratio becomes <math>\dfrac{1}{2\sqrt2+2}</math>. Multiplying the numerator and the denominator each by <math>2\sqrt{2}-2</math> will cancel out the radical, so the fraction is now <math>\dfrac{1}{2\sqrt2+2}\times\dfrac{2\sqrt{2}-2}{2\sqrt{2}-2}=\dfrac{2\sqrt{2}-2}{4}=\boxed{\mathrm{(A)}\ \dfrac{\sqrt{2}-1}{2}}</math>
 
Let's assume that the side length of the octagon is <math>x</math>. The area of the center square is just <math>x^2</math>. The triangles are all <math>45-45-90</math> triangles, with a side length ratio of <math>1:1:\sqrt{2}</math>. The area of each of the <math>4</math> identical triangles is <math>\left(\dfrac{x}{\sqrt{2}}\right)^2\times\dfrac{1}{2}=\dfrac{x^2}{4}</math>, so the total area of all of the triangles is also <math>x^2</math>. Now, we must find the area of all of the 4 identical rectangles. One of the side lengths is <math>x</math> and the other side length is <math>\dfrac{x}{\sqrt{2}}=\dfrac{x\sqrt{2}}{2}</math>, so the area of all of the rectangles is <math>2x^2\sqrt{2}</math>. The ratio of the area of the square to the area of the octagon is <math>\dfrac{x^2}{2x^2+2x^2\sqrt{2}}</math>. Cancelling <math>x^2</math> from the fraction, the ratio becomes <math>\dfrac{1}{2\sqrt2+2}</math>. Multiplying the numerator and the denominator each by <math>2\sqrt{2}-2</math> will cancel out the radical, so the fraction is now <math>\dfrac{1}{2\sqrt2+2}\times\dfrac{2\sqrt{2}-2}{2\sqrt{2}-2}=\dfrac{2\sqrt{2}-2}{4}=\boxed{\mathrm{(A)}\ \dfrac{\sqrt{2}-1}{2}}</math>
  
 +
 +
There's a similar but simpler way that what the user above has done. You set one of the sides to be 2, then the area of the middle square is <math>4</math>, the combined area of the 4 triangles are <math>4*1=4</math>, the combined areas of the rectangles on the side become 8 sqrt2, you add all of that up. Which is 8+8 sqrt2, then 4 divide that is going to give you A
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2011|ab=B|num-b=11|num-a=13}}
 
{{AMC12 box|year=2011|ab=B|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:59, 20 January 2017

Problem

A dart board is a regular octagon divided into regions as shown below. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is the probability that the dart lands within the center square?

[asy] unitsize(10mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2)); draw(A--B--C--D--E--F--G--H--cycle); draw(A--D); draw(B--G); draw(C--F); draw(E--H);[/asy]

$\textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad \textbf{(B)}\ \frac{1}{4} \qquad \textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad \textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad \textbf{(E)}\ 2 - \sqrt{2}$

Solution

Let's assume that the side length of the octagon is $x$. The area of the center square is just $x^2$. The triangles are all $45-45-90$ triangles, with a side length ratio of $1:1:\sqrt{2}$. The area of each of the $4$ identical triangles is $\left(\dfrac{x}{\sqrt{2}}\right)^2\times\dfrac{1}{2}=\dfrac{x^2}{4}$, so the total area of all of the triangles is also $x^2$. Now, we must find the area of all of the 4 identical rectangles. One of the side lengths is $x$ and the other side length is $\dfrac{x}{\sqrt{2}}=\dfrac{x\sqrt{2}}{2}$, so the area of all of the rectangles is $2x^2\sqrt{2}$. The ratio of the area of the square to the area of the octagon is $\dfrac{x^2}{2x^2+2x^2\sqrt{2}}$. Cancelling $x^2$ from the fraction, the ratio becomes $\dfrac{1}{2\sqrt2+2}$. Multiplying the numerator and the denominator each by $2\sqrt{2}-2$ will cancel out the radical, so the fraction is now $\dfrac{1}{2\sqrt2+2}\times\dfrac{2\sqrt{2}-2}{2\sqrt{2}-2}=\dfrac{2\sqrt{2}-2}{4}=\boxed{\mathrm{(A)}\ \dfrac{\sqrt{2}-1}{2}}$


There's a similar but simpler way that what the user above has done. You set one of the sides to be 2, then the area of the middle square is $4$, the combined area of the 4 triangles are $4*1=4$, the combined areas of the rectangles on the side become 8 sqrt2, you add all of that up. Which is 8+8 sqrt2, then 4 divide that is going to give you A

See also

2011 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png