Difference between revisions of "2008 AMC 10B Problems/Problem 18"

(Solution 1)
Line 4: Line 4:
 
<math>\mathrm{(A)}\ 500\qquad\mathrm{(B)}\ 900\qquad\mathrm{(C)}\ 950\qquad\mathrm{(D)}\ 1000\qquad\mathrm{(E)}\ 1900</math>
 
<math>\mathrm{(A)}\ 500\qquad\mathrm{(B)}\ 900\qquad\mathrm{(C)}\ 950\qquad\mathrm{(D)}\ 1000\qquad\mathrm{(E)}\ 1900</math>
  
==Solution==
+
==Solution 1==
 
Let <math>x</math> be the number of bricks in the chimney. Using <math>distance = rate \cdot time</math>, we get
 
Let <math>x</math> be the number of bricks in the chimney. Using <math>distance = rate \cdot time</math>, we get
<math>x = (x/9 + x/10 - 10)\cdot(5)</math>. Solving for <math>x</math>, we get <math>\boxed{900}</math>.
+
<math>x = (x/9 + x/10 - 10)\cdot(5)</math>. Solving for <math>x</math>, we get <math>\boxed{900}</math>
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=B|num-b=17|num-a=19}}
 
{{AMC10 box|year=2008|ab=B|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:14, 23 January 2017

Problem

Bricklayer Brenda would take nine hours to build a chimney alone, and bricklayer Brandon would take $10$ hours to build it alone. When they work together, they talk a lot, and their combined output decreases by $10$ bricks per hour. Working together, they build the chimney in $5$ hours. How many bricks are in the chimney?

$\mathrm{(A)}\ 500\qquad\mathrm{(B)}\ 900\qquad\mathrm{(C)}\ 950\qquad\mathrm{(D)}\ 1000\qquad\mathrm{(E)}\ 1900$

Solution 1

Let $x$ be the number of bricks in the chimney. Using $distance = rate \cdot time$, we get $x = (x/9 + x/10 - 10)\cdot(5)$. Solving for $x$, we get $\boxed{900}$

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png