Difference between revisions of "2017 AMC 10A Problems/Problem 22"

m
Line 4: Line 4:
  
 
<math> \mathrm{(A) \ }\dfrac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \mathrm{(C) \ } \frac{1}{2} \qquad \mathrm{(D) \ }\sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \mathrm{(E) \ } \frac{4}{3}-\dfrac{4\sqrt{3}\pi}{27}</math>
 
<math> \mathrm{(A) \ }\dfrac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \mathrm{(C) \ } \frac{1}{2} \qquad \mathrm{(D) \ }\sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \mathrm{(E) \ } \frac{4}{3}-\dfrac{4\sqrt{3}\pi}{27}</math>
 +
 +
==See Also==
 +
{{AMC10 box|year=2017|ab=A|num-b=21|num-a=23}}
 +
{{MAA Notice}}

Revision as of 16:41, 8 February 2017

Problem

Sides $\overline{AB}$ and $\overline{AC}$ of equilateral triangle $ABC$ are tangent to a circle as points $B$ and $C$ respectively. What fraction of the area of $\triangle ABC$ lies outside the circle?

$\mathrm{(A) \ }\dfrac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \mathrm{(C) \ } \frac{1}{2} \qquad \mathrm{(D) \ }\sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \mathrm{(E) \ } \frac{4}{3}-\dfrac{4\sqrt{3}\pi}{27}$

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png