Difference between revisions of "2017 AMC 10A Problems/Problem 24"
(→Solution) |
(→Solution 2) |
||
Line 56: | Line 56: | ||
We know that <math>f(1)</math> is the sum of its coefficients, hence <math>1+1+b+100+c</math>. We substitute the values we obtained for <math>b</math> and <math>c</math> into this expression to get <math>f(1) = 1 + 1 + (-8009) + 100 + 900 = \boxed{-7007}</math> or <math>\boxed{\text{C}}</math>. | We know that <math>f(1)</math> is the sum of its coefficients, hence <math>1+1+b+100+c</math>. We substitute the values we obtained for <math>b</math> and <math>c</math> into this expression to get <math>f(1) = 1 + 1 + (-8009) + 100 + 900 = \boxed{-7007}</math> or <math>\boxed{\text{C}}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | Let <math>r_1,r_2,</math> and <math>r_3</math> be the roots of <math>g(x)</math>. Let <math>r_4</math> be the additional root of <math>f(x)</math>. Then from Vieta's formulas on the quadratic term of <math>g(x)</math> and the cubic term of <math>f(x)</math>, we obtain the following: | ||
+ | |||
+ | <cmath>\begin{align*} | ||
+ | r_1+r_2+r_3&=-a \\ | ||
+ | r_1+r_2+r_3+r_4&=-1 | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Thus <math>r_4=a-1</math>. | ||
+ | |||
+ | Now applying Vieta's formulas on the constant term of <math>g(x)</math>, the linear term of <math>g(x)</math>, and the linear term of <math>f(x)</math>, we obtain: | ||
+ | |||
+ | <cmath>\begin{align*} | ||
+ | r_1r_2r_3 & = -10\\ | ||
+ | r_1r_2+r_2r_3+r_3r_1 &= 1\\ | ||
+ | r_1r_2r_3+r_2r_3r_4+r_3r_4r_1+r_4r_1r_2 & = -100\\ | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Substituting for <math>r_1r_2r_3</math> in the bottom equation and factoring the remainder of the expression, we obtain: | ||
+ | |||
+ | <cmath>-10+(r_1r_2+r_2r_3+r_3r_1)r_4=-10+r_4=-100</cmath> | ||
+ | |||
+ | It follows that <math>r_4=-90</math>. But <math>r_4=a-1</math> so <math>a=-89</math> | ||
+ | |||
+ | Now we can factor <math>f(x)</math> in terms of <math>g(x)</math> as | ||
+ | |||
+ | <cmath>f(x)=(x-r_4)g(x)=(x+90)g(x)</cmath> | ||
+ | |||
+ | Then <math>f(1)=91g(1)</math> and | ||
+ | |||
+ | <cmath>g(1)=1^3-89\cdot 1^2+1+10=-77</cmath> | ||
+ | |||
+ | Hence <math>f(1)=91\cdot(-77)=\boxed{\textbf{(C)}\,-7007}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2017|ab=A|num-b=8|num-a=10}} | {{AMC10 box|year=2017|ab=A|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:14, 8 February 2017
Problem
For certain real numbers , , and , the polynomial has three distinct roots, and each root of is also a root of the polynomial What is ?
Solution
must have four roots, three of which are roots of . Using the fact that every polynomial has a unique factorization into its roots, and since the leading coefficient of and are the same, we know that
where is the fourth root of . Substituting and expanding, we find that
Comparing coefficients with , we see that
Let's solve for and . Since , , so . Since , , and . Thus, we know that
Taking , we find that
Solution 2
We notice that the constant term of and the constant term in . Because can be factored as (where is the unshared root of , we see that using the constant term, and therefore . Now we once again write out in factored form:
.
We can expand the expression on the right-hand side to get:
Now we have .
Simply looking at the coefficients for each corresponding term (knowing that they must be equal), we have the equations:
and finally,
.
We know that is the sum of its coefficients, hence . We substitute the values we obtained for and into this expression to get or .
Solution 3
Let and be the roots of . Let be the additional root of . Then from Vieta's formulas on the quadratic term of and the cubic term of , we obtain the following:
Thus .
Now applying Vieta's formulas on the constant term of , the linear term of , and the linear term of , we obtain:
Substituting for in the bottom equation and factoring the remainder of the expression, we obtain:
It follows that . But so
Now we can factor in terms of as
Then and
Hence .
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.