Difference between revisions of "2017 AMC 12A Problems/Problem 24"
Thomas0115 (talk | contribs) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Quadrilateral <math>ABCD</math> is inscribed in circle <math>O</math> and has side lengths <math>AB=3, BC=2, CD=6</math>, and <math>DA=8</math>. Let <math>X</math> and <math>Y</math> be points on <math>\overline{BD}</math> such that <math>\frac{DX}{BD} = \frac{1}{4}</math> and <math>\frac{BY}{BD} = \frac{11}{36}</math>. | + | |
+ | Quadrilateral <math>ABCD</math> is inscribed in circle <math>O</math> and has side lengths <math>AB=3, BC=2, CD=6</math>, and <math>DA=8</math>. Let <math>X</math> and <math>Y</math> be points on | ||
+ | |||
+ | <math>\overline{BD}</math> such that <math>\frac{DX}{BD} = \frac{1}{4}</math> and <math>\frac{BY}{BD} = \frac{11}{36}</math>. | ||
Let <math>E</math> be the intersection of line <math>AX</math> and the line through <math>Y</math> parallel to <math>\overline{AD}</math>. Let <math>F</math> be the intersection of line <math>CX</math> and the line through <math>E</math> parallel to <math>\overline{AC}</math>. Let <math>G</math> be the point on circle <math>O</math> other than <math>C</math> that lies on line <math>CX</math>. What is <math>XF\cdot XG</math>? | Let <math>E</math> be the intersection of line <math>AX</math> and the line through <math>Y</math> parallel to <math>\overline{AD}</math>. Let <math>F</math> be the intersection of line <math>CX</math> and the line through <math>E</math> parallel to <math>\overline{AC}</math>. Let <math>G</math> be the point on circle <math>O</math> other than <math>C</math> that lies on line <math>CX</math>. What is <math>XF\cdot XG</math>? | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | It is easy to see that <math>\frac{XY}{BD} = 1 - \frac{1}{4} - \frac{11}{36} = \frac{4}{9}</math>. | ||
+ | First we note that <math>\triangle AXD \sim \triangle EXY</math> with a ratio of <math>\frac{DX}{XY} = \frac{9}{16}</math>. Then <math>\triangle ACX \sim \triangle EFX</math> with a ratio of <math>\frac{AX}{XE} = \frac{DX}{XY} = \frac{9}{16}</math>, so <math>\frac{XF}{CX} = \frac{9}{16}</math>. | ||
+ | Then we find the length of <math>BD</math>. Because the quadrilateral is cyclic, we can simply use the Law of Cosines. <cmath>BD^2=3^2+8^2-48\cos\angle BAD=2^2+6^2-24\cos (180-\angle BAD)=2^2+6^2+24\cos\angle BAD</cmath><cmath>\rightarrow \cos\angle BAD = \frac{11}{24}</cmath><cmath>\rightarrow BD=\sqrt{51}</cmath> | ||
+ | By Power of a Point, <math>CX\cdot XG = DX\cdot XB = \frac{\sqrt{51}}{4} \frac{3\sqrt{51}}{4}</math>. Thus <math>XF\cdot XG = \frac{XF}{CX} CX\cdot XG = \frac{51}{3} = \boxed{17} (A)</math>. | ||
+ | |||
+ | -solution by FRaelya | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=A|num-b=23|num-a=25}} | {{AMC12 box|year=2017|ab=A|num-b=23|num-a=25}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:38, 8 February 2017
Problem
Quadrilateral is inscribed in circle and has side lengths , and . Let and be points on
such that and . Let be the intersection of line and the line through parallel to . Let be the intersection of line and the line through parallel to . Let be the point on circle other than that lies on line . What is ?
Solution
It is easy to see that . First we note that with a ratio of . Then with a ratio of , so . Then we find the length of . Because the quadrilateral is cyclic, we can simply use the Law of Cosines. By Power of a Point, . Thus .
-solution by FRaelya
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.