Difference between revisions of "2017 AIME II Problems/Problem 15"
(→See Also) |
The turtle (talk | contribs) (→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | <math>\boxed{682}</math> | ||
=See Also= | =See Also= | ||
{{AIME box|year=2017|n=II|num-b=14|after=Last Question}} | {{AIME box|year=2017|n=II|num-b=14|after=Last Question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:33, 23 March 2017
Problem
Tetrahedron has , , and . For any point in space, define . The least possible value of can be expressed as , where and are positive integers, and is not divisible by the square of any prime. Find .
Solution
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.