Difference between revisions of "2017 AIME II Problems/Problem 12"
William122 (talk | contribs) (→Solution) |
William122 (talk | contribs) m (→Solution 2) |
||
Line 20: | Line 20: | ||
==Solution 2== | ==Solution 2== | ||
Let the center of circle <math>C_i</math> be <math>O_i</math>. Note that <math>O_0BO_1</math> is a right triangle, with right angle at <math>B</math>. Also, <math>O_1B=\frac{11}{60}O_0B</math>, or <math>O_0B = \frac{60}{61}O_0O_1</math>. It is clear that <math>O_0O_1=1-r=\frac{49}{60}</math>, so <math>O_0B=\frac{60}{61}\times\frac{49}{60}=\frac{49}{61}</math>. Our answer is <math>49+61=\boxed{110}</math> | Let the center of circle <math>C_i</math> be <math>O_i</math>. Note that <math>O_0BO_1</math> is a right triangle, with right angle at <math>B</math>. Also, <math>O_1B=\frac{11}{60}O_0B</math>, or <math>O_0B = \frac{60}{61}O_0O_1</math>. It is clear that <math>O_0O_1=1-r=\frac{49}{60}</math>, so <math>O_0B=\frac{60}{61}\times\frac{49}{60}=\frac{49}{61}</math>. Our answer is <math>49+61=\boxed{110}</math> | ||
+ | |||
-william122 | -william122 | ||
Revision as of 08:52, 27 July 2017
Contents
Problem
Circle has radius , and the point is a point on the circle. Circle has radius and is internally tangent to at point . Point lies on circle so that is located counterclockwise from on . Circle has radius and is internally tangent to at point . In this way a sequence of circles and a sequence of points on the circles are constructed, where circle has radius and is internally tangent to circle at point , and point lies on counterclockwise from point , as shown in the figure below. There is one point inside all of these circles. When , the distance from the center to is , where and are relatively prime positive integers. Find .
Solution
Impose a coordinate system and let the center of be and be . Therefore , , , , and so on, where the signs alternate in groups of . The limit of all these points is point . Using the geometric series formula on and reducing the expression, we get . The distance from to the origin is Let , and the distance from the origin is . .
Solution 2
Let the center of circle be . Note that is a right triangle, with right angle at . Also, , or . It is clear that , so . Our answer is
-william122
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.