Difference between revisions of "2017 AMC 12A Problems/Problem 24"
m (→Solution 2) |
m |
||
Line 10: | Line 10: | ||
==Solution 1== | ==Solution 1== | ||
− | + | Using the given ratios, note that <math>\frac{XY}{BD} = 1 - \frac{1}{4} - \frac{11}{36} = \frac{4}{9}.</math> | |
− | + | ||
+ | By AA Similarity, <math>\triangle AXD \sim \triangle EXY</math> with a ratio of <math>\frac{DX}{XY} = \frac{9}{16}</math> and <math>\triangle ACX \sim \triangle EFX</math> with a ratio of <math>\frac{AX}{XE} = \frac{DX}{XY} = \frac{9}{16}</math>, so <math>\frac{XF}{CX} = \frac{16}{9}</math>. | ||
+ | |||
Now we find the length of <math>BD</math>. Because the quadrilateral is cyclic, we can simply use the Law of Cosines. <cmath>BD^2=3^2+8^2-48\cos\angle BAD=2^2+6^2-24\cos (180-\angle BAD)=2^2+6^2+24\cos\angle BAD</cmath><cmath>\rightarrow \cos\angle BAD = \frac{11}{24}</cmath><cmath>\rightarrow BD=\sqrt{51}</cmath> | Now we find the length of <math>BD</math>. Because the quadrilateral is cyclic, we can simply use the Law of Cosines. <cmath>BD^2=3^2+8^2-48\cos\angle BAD=2^2+6^2-24\cos (180-\angle BAD)=2^2+6^2+24\cos\angle BAD</cmath><cmath>\rightarrow \cos\angle BAD = \frac{11}{24}</cmath><cmath>\rightarrow BD=\sqrt{51}</cmath> | ||
By Power of a Point, <math>CX\cdot XG = DX\cdot XB = \frac{\sqrt{51}}{4} \frac{3\sqrt{51}}{4}</math>. Thus <math>XF\cdot XG = \frac{XF}{CX} CX\cdot XG = \frac{51}{3} = \boxed{\textbf{(A)}\ 17}.</math> | By Power of a Point, <math>CX\cdot XG = DX\cdot XB = \frac{\sqrt{51}}{4} \frac{3\sqrt{51}}{4}</math>. Thus <math>XF\cdot XG = \frac{XF}{CX} CX\cdot XG = \frac{51}{3} = \boxed{\textbf{(A)}\ 17}.</math> |
Revision as of 10:01, 30 December 2017
Contents
[hide]Problem
Quadrilateral is inscribed in circle
and has side lengths
, and
. Let
and
be points on
such that
and
.
Let
be the intersection of line
and the line through
parallel to
. Let
be the intersection of line
and the line through
parallel to
. Let
be the point on circle
other than
that lies on line
. What is
?
Solution 1
Using the given ratios, note that
By AA Similarity, with a ratio of
and
with a ratio of
, so
.
Now we find the length of . Because the quadrilateral is cyclic, we can simply use the Law of Cosines.
By Power of a Point,
. Thus
-solution by FRaelya
Solution 2
We shall make use of the pairs of similar triangles present in the problem, Ptolemy's Theorem, and Power of a Point.
Let be the intersection of
and
. First, from
being a cyclic quadrilateral, we have that
,
. Therefore,
,
, and
, so we have
,
, and
. By Ptolemy's Theorem,
Thus,
. Then, by Power of a Point,
. So,
.
Next, observe that
, so
. Also,
, so
. We can compute
after noticing that
and that
. So,
. Then,
.
Multiplying our equations for and
yields that
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.