GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2018 AMC 12A Problems"

Line 193: Line 193:
 
==Problem 21==
 
==Problem 21==
  
 +
Which of the following polynomials has the greatest real root?
 +
<math>\textbf{(A) }  x^{19}+2018x^{11}+1  \qquad        \textbf{(B) }  x^{17}+2018x^{11}+1  \qquad    \textbf{(C) }  x^{19}+2018x^{13}+1  \qquad  \textbf{(D) }  x^{17}+2018x^{13}+1 \qquad  \textbf{(E) }  2019x+2018 </math>
  
 
[[2018 AMC 12A  Problems/Problem 21|Solution]]
 
[[2018 AMC 12A  Problems/Problem 21|Solution]]
  
 
==Problem 22==
 
==Problem 22==
 +
 +
The solutions to the equations <math>z^2=4+4\sqrt{15}i</math> and <math>z^2=2+2\sqrt 3i,</math> where <math>i=\sqrt{-1},</math> form the vertices of a parallelogram in the complex plane. The area of this parallelogram can be written in the form <math>p\sqrt q-r\sqrt s,</math> where <math>p,</math> <math>q,</math> <math>r,</math> and <math>s</math> are positive integers and neither <math>q</math> nor <math>s</math> is divisible by the square of any prime number. What is <math>p+q+r+s?</math>
 +
 +
<math>\textbf{(A)} 20 \qquad
 +
\textbf{(B)} 21 \qquad
 +
\textbf{(C)} 22 \qquad
 +
\textbf{(D)} 23 \qquad
 +
\textbf{(E)} 24 </math>
  
 
[[2018 AMC 12A  Problems/Problem 22|Solution]]
 
[[2018 AMC 12A  Problems/Problem 22|Solution]]
  
 
==Problem 23==
 
==Problem 23==
 +
 +
In <math>\triangle PAT,</math> <math>\angle P=36^{\circ},</math> <math>\angle A=56^{\circ},</math> and <math>PA=10.</math> Points <math>U</math> and <math>G</math> lie on sides <math>\overline{TP}</math> and <math>\overline{TA},</math> respectively, so that <math>PU=AG=1.</math> Let <math>M</math> and <math>N</math> be the midpoints of segments <math>\overline{PA}</math> and <math>\overline{UG},</math> respectively. What is the degree measure of the acute angle formed by lines <math>MN</math> and <math>PA?</math>
 +
 +
<math>\textbf{(A)} 76 \qquad
 +
\textbf{(B)} 77 \qquad
 +
\textbf{(C)} 78 \qquad
 +
\textbf{(D)} 79 \qquad
 +
\textbf{(E)} 80 </math>
  
 
[[2018 AMC 12A  Problems/Problem 23|Solution]]
 
[[2018 AMC 12A  Problems/Problem 23|Solution]]
  
 
==Problem 24==
 
==Problem 24==
 +
 +
Alice, Bob, and Carol play a game in which each of them chooses a real number between 0 and 1. The winner of the game is the one whose number is between the numbers chosen by the other two players. Alice announces that she will choose her number uniformly at random from all the numbers between 0 and 1, and Bob announces that he will choose his number uniformly at random from all the numbers between <math>\tfrac{1}{2}</math> and <math>\tfrac{2}{3}.</math> Armed with this information, what number should Carol choose to maximize her chance of winning?
 +
 +
 +
<math>
 +
\textbf{(A) }\frac{1}{2}\qquad
 +
\textbf{(B) }\frac{13}{24} \qquad
 +
\textbf{(C) }\frac{7}{12} \qquad
 +
\textbf{(D) }\frac{5}{8} \qquad
 +
\textbf{(E) }\frac{2}{3}\qquad
 +
</math>
  
 
[[2018 AMC 12A  Problems/Problem 24|Solution]]
 
[[2018 AMC 12A  Problems/Problem 24|Solution]]
  
 
==Problem 25==
 
==Problem 25==
 +
 +
For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>?
 +
 +
<math>\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}</math>
  
 
[[2018 AMC 12A  Problems/Problem 25|Solution]]
 
[[2018 AMC 12A  Problems/Problem 25|Solution]]

Revision as of 00:14, 9 February 2018

Problem 1

A large urn contains $100$ balls, of which $36 \%$ are red and the rest are blue. How many of the blue balls must be removed so that the percentage of red balls in the urn will be $72 \%$? (No red balls are to be removed.)

$\textbf{(A)}\ 28 \qquad\textbf{(B)}\  32 \qquad\textbf{(C)}\  36 \qquad\textbf{(D)}\   50 \qquad\textbf{(E)}\ 64$

Solution

Problem 2

While exploring a cave, Carl comes across a collection of $5$-pound rocks worth $$14$ each, $4$-pound rocks worth $$11$ each, and $1$-pound rocks worth $$2$ each. There are at least $20$ of each size. He can carry at most $18$ pounds. What is the maximum value, in dollars, of the rocks he can carry out of the cave?

$\textbf{(A) } 48 \qquad \textbf{(B) } 49 \qquad \textbf{(C) } 50 \qquad \textbf{(D) } 51 \qquad \textbf{(E) } 52$

Solution

Problem 3

How many ways can a student schedule 3 mathematics courses -- algebra, geometry, and number theory -- in a 6-period day if no two mathematics courses can be taken in consecutive periods? (What courses the student takes during the other 3 periods is of no concern here.)

$\textbf{(A) }3\qquad\textbf{(B) }6\qquad\textbf{(C) }12\qquad\textbf{(D) }18\qquad\textbf{(E) }24$

Solution

Problem 4

Solution

Problem 5

What is the sum of all possible values of $k$ for which the polynomials $x^2 - 3x + 2$ and $x^2 - 5x + k$ have a root in common?

$\textbf{(A) }3 \qquad\textbf{(B) }4 \qquad\textbf{(C) }5 \qquad\textbf{(D) }6 \qquad\textbf{(E) }10 \qquad$

Solution

Problem 6

For positive integers $m$ and $n$ such that $m+10<n+1$, both the mean and the median of the set $\{m, m+4, m+10, n+1, n+2, 2n\}$ are equal to $n$. What is $m+n$?

$\textbf{(A)}20\qquad\textbf{(B)}21\qquad\textbf{(C)}22\qquad\textbf{(D)}23\qquad\textbf{(E)}24$

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Which of the following describes the largest subset of values of $y$ within the closed interval $[0,\pi]$ for which \[\sin(x+y)\leq \sin(x)+\sin(y)\]for every $x$ between $0$ and $\pi$, inclusive? \[\textbf{(A) } y=0 \qquad \textbf{(B) } 0\leq y\leq \frac{\pi}{4} \qquad \textbf{(C) } 0\leq y\leq \frac{\pi}{2} \qquad \textbf{(D) } 0\leq y\leq \frac{3\pi}{4} \qquad \textbf{(E) } 0\leq y\leq \pi\]

Solution

Problem 10

How many ordered pairs of real numbers $(x,y)$ satisfy the following system of equations? \[x+3y=3\] \[\big||x|-|y|\big|=1\] $\textbf{(A) } 1 \qquad  \textbf{(B) } 2 \qquad  \textbf{(C) } 3 \qquad  \textbf{(D) } 4 \qquad  \textbf{(E) } 8$

Solution

Problem 11

A paper triangle with sides of lengths 3,4, and 5 inches, as shown, is folded so that point $A$ falls on point $B$. What is the length in inches of the crease? [asy] draw((0,0)--(4,0)--(4,3)--(0,0)); label("$A$", (0,0), SW); label("$B$", (4,3), NE); label("$C$", (4,0), SE); label("$4$", (2,0), S); label("$3$", (4,1.5), E); label("$5$", (2,1.5), NW); fill(origin--(0,0)--(4,3)--(4,0)--cycle, gray); [/asy] $\textbf{(A) }   1+\frac12 \sqrt2   \qquad        \textbf{(B) }   \sqrt3   \qquad    \textbf{(C) }   \frac74   \qquad   \textbf{(D) }  \frac{15}{8} \qquad  \textbf{(E) }   2$

Solution

Problem 12

Let $S$ be a set of 6 integers taken from $\{1,2,\dots,12\}$ with the property that if $a$ and $b$ are elements of $S$ with $a<b$, then $b$ is not a multiple of $a$. What is the least possible value of an element in $S?$

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 7$

Solution

Problem 13

How many nonnegative integers can be written in the form \[a_7\cdot3^7+a_6\cdot3^6+a_5\cdot3^5+a_4\cdot3^4+a_3\cdot3^3+a_2\cdot3^2+a_1\cdot3^1+a_0\cdot3^0,\] where $a_i\in \{-1,0,1\}$ for $0\le i \le 7$?

$\textbf{(A) } 512 \qquad  \textbf{(B) } 729 \qquad  \textbf{(C) } 1094 \qquad  \textbf{(D) } 3281 \qquad  \textbf{(E) } 59,048$

Solution

Problem 14

The solutions to the equation $\log_{3x} 4 = \log_{2x} 8$, where $x$ is a positive real number other than $\tfrac{1}{3}$ or $\tfrac{1}{2}$, can be written as $\tfrac {p}{q}$ where $p$ and $q$ are relatively prime positive integers. What is $p + q$?

$\textbf{(A) } 5   \qquad     \textbf{(B) } 13   \qquad     \textbf{(C) } 17   \qquad    \textbf{(D) } 31 \qquad   \textbf{(E) } 35$

Solution

Problem 15

Solution

Problem 16

Which of the following describes the set of values of $a$ for which the curves $x^2+y^2=a^2$ and $y=x^2-a$ in the real $xy$-plane intersect at exactly $3$ points?

$\textbf{(A) }a=\frac14 \qquad \textbf{(B) }\frac14 < a < \frac12 \qquad \textbf{(C) }a>\frac14 \qquad \textbf{(D) }a=\frac12 \qquad \textbf{(E) }a>\frac12 \qquad$

Solution

Problem 17

Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is 2 units. What fraction of the field is planted?

[asy] draw((0,0)--(4,0)--(0,3)--(0,0)); draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0)); fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray); label("$4$", (2,0), N); label("$3$", (0,1.5), E); label("$2$", (.8,1), E); label("$S$", (0,0), NE); draw((0.3,0.3)--(1.4,1.9), dashed); [/asy]

$\textbf{(A) }   \frac{25}{27}   \qquad        \textbf{(B) }   \frac{26}{27}   \qquad    \textbf{(C) }   \frac{73}{75}   \qquad   \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }   \frac{74}{75}$

Solution

Problem 18

Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?

$\textbf{(A) }60 \qquad \textbf{(B) }65 \qquad \textbf{(C) }70 \qquad \textbf{(D) }75 \qquad \textbf{(E) }80 \qquad$

Solution

Problem 19

Let $A$ be the set of positive integers that have no prime factors other than $2$, $3$, or $5$. The infinite sum \[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{12} + \frac{1}{15} + \frac{1}{16} + \frac{1}{18} + \frac{1}{20} + \cdots\]of the reciprocals of the elements of $A$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

$\textbf{(A)} \text{ 16} \qquad \textbf{(B)} \text{ 17} \qquad \textbf{(C)} \text{ 19} \qquad \textbf{(D)} \text{ 23} \qquad \textbf{(E)} \text{ 36}$

Solution

Problem 20

Triangle $ABC$ is an isosceles right triangle with $AB=AC=3$. Let $M$ be the midpoint of hypotenuse $\overline{BC}$. Points $I$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $AI>AE$ and $AIME$ is a cyclic quadrilateral. Given that triangle $EMI$ has area $2$, the length $CI$ can be written as $\frac{a-\sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers and $b$ is not divisible by the square of any prime. What is the value of $a+b+c$?

$\textbf{(A) }9 \qquad \textbf{(B) }10 \qquad \textbf{(C) }11 \qquad \textbf{(D) }12 \qquad \textbf{(E) }13 \qquad$

Solution

Problem 21

Which of the following polynomials has the greatest real root? $\textbf{(A) }   x^{19}+2018x^{11}+1   \qquad        \textbf{(B) }   x^{17}+2018x^{11}+1   \qquad    \textbf{(C) }   x^{19}+2018x^{13}+1   \qquad   \textbf{(D) }  x^{17}+2018x^{13}+1 \qquad  \textbf{(E) }   2019x+2018$

Solution

Problem 22

The solutions to the equations $z^2=4+4\sqrt{15}i$ and $z^2=2+2\sqrt 3i,$ where $i=\sqrt{-1},$ form the vertices of a parallelogram in the complex plane. The area of this parallelogram can be written in the form $p\sqrt q-r\sqrt s,$ where $p,$ $q,$ $r,$ and $s$ are positive integers and neither $q$ nor $s$ is divisible by the square of any prime number. What is $p+q+r+s?$

$\textbf{(A)} 20 \qquad  \textbf{(B)} 21 \qquad  \textbf{(C)} 22 \qquad  \textbf{(D)} 23 \qquad  \textbf{(E)} 24$

Solution

Problem 23

In $\triangle PAT,$ $\angle P=36^{\circ},$ $\angle A=56^{\circ},$ and $PA=10.$ Points $U$ and $G$ lie on sides $\overline{TP}$ and $\overline{TA},$ respectively, so that $PU=AG=1.$ Let $M$ and $N$ be the midpoints of segments $\overline{PA}$ and $\overline{UG},$ respectively. What is the degree measure of the acute angle formed by lines $MN$ and $PA?$

$\textbf{(A)} 76 \qquad  \textbf{(B)} 77 \qquad  \textbf{(C)} 78 \qquad  \textbf{(D)} 79 \qquad  \textbf{(E)} 80$

Solution

Problem 24

Alice, Bob, and Carol play a game in which each of them chooses a real number between 0 and 1. The winner of the game is the one whose number is between the numbers chosen by the other two players. Alice announces that she will choose her number uniformly at random from all the numbers between 0 and 1, and Bob announces that he will choose his number uniformly at random from all the numbers between $\tfrac{1}{2}$ and $\tfrac{2}{3}.$ Armed with this information, what number should Carol choose to maximize her chance of winning?


$\textbf{(A) }\frac{1}{2}\qquad \textbf{(B) }\frac{13}{24} \qquad \textbf{(C) }\frac{7}{12} \qquad \textbf{(D) }\frac{5}{8} \qquad \textbf{(E) }\frac{2}{3}\qquad$

Solution

Problem 25

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}$

Solution