Difference between revisions of "1986 AHSME Problems/Problem 16"

m (See also)
(Solution)
Line 25: Line 25:
  
 
==Solution==
 
==Solution==
 +
Since we are given that <math>\triangle{PAB}\sim\triangle{PCA}</math>, we have the following
  
 +
<math>\frac{PC}{PA}=\frac{6}{8}=\frac{PA}{PC+7}</math>.
 +
 +
Solving for <math>PA</math> in <math>\frac{PC}{PA}=\frac{6}{8}=\frac{3}{4}</math> gives us <math>PA=\frac{4PC}{3}</math>.
 +
 +
We also have <math>\frac{PA}{PC+7}=\frac{3}{4}</math>. Substituting <math>PA</math> in for our expression yields
 +
 +
<math>\frac{\frac{4PC}{3}}{PC+7}=\frac{3}{4}</math>
 +
 +
<math>\frac{16PC}{3}=3PC+21</math>
 +
 +
<math>\frac{7PC}{3}=21</math>
 +
 +
<math>PC=9\implies\boxed{\textbf{(C)}}</math>
  
 
== See also ==
 
== See also ==

Revision as of 21:42, 10 February 2018

Problem

In $\triangle ABC, AB = 8, BC = 7, CA = 6$ and side $BC$ is extended, as shown in the figure, to a point $P$ so that $\triangle PAB$ is similar to $\triangle PCA$. The length of $PC$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, P=(1.5,5), B=(8,0), C=P+2.5*dir(P--B); draw(A--P--C--A--B--C); label("A", A, W); label("B", B, E); label("C", C, NE); label("P", P, NW); label("6", 3*dir(A--C), SE); label("7", B+3*dir(B--C), NE); label("8", (4,0), S); [/asy]

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 11$

Solution

Since we are given that $\triangle{PAB}\sim\triangle{PCA}$, we have the following

$\frac{PC}{PA}=\frac{6}{8}=\frac{PA}{PC+7}$.

Solving for $PA$ in $\frac{PC}{PA}=\frac{6}{8}=\frac{3}{4}$ gives us $PA=\frac{4PC}{3}$.

We also have $\frac{PA}{PC+7}=\frac{3}{4}$. Substituting $PA$ in for our expression yields

$\frac{\frac{4PC}{3}}{PC+7}=\frac{3}{4}$

$\frac{16PC}{3}=3PC+21$

$\frac{7PC}{3}=21$

$PC=9\implies\boxed{\textbf{(C)}}$

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png