Difference between revisions of "2018 AMC 12B Problems/Problem 9"

Line 25: Line 25:
 
Thus, we have: <cmath>2\left(\dfrac{1+100}{2}\cdot 100\right).</cmath>
 
Thus, we have: <cmath>2\left(\dfrac{1+100}{2}\cdot 100\right).</cmath>
  
This gives us: <cmath>\boxed{\textbf{D} 1010000}.</cmath>
+
This gives us: <cmath>\boxed{\textbf{(D) } 1010000}.</cmath>
  
 
== Solution 2 ==
 
== Solution 2 ==

Revision as of 18:09, 16 February 2018

Problem

What is \[\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) ?\]

$\textbf{(A) }100,100 \qquad \textbf{(B) }500,500\qquad \textbf{(C) }505,000 \qquad \textbf{(D) }1,001,000 \qquad \textbf{(E) }1,010,000 \qquad$

Solution 1

We can start by writing out the first couple of terms:

\[(1+1) + (1+2) + (1+3) + \dots + (1+100)\] \[(2+1) + (2+2) + (2+3) + \dots + (2+100)\] \[(3+1) + (3+2) + (3+3) + \dots + (3+100)\] \[\vdots\] \[(100+1) + (100+2) + (100+3) + \dots + (100+100)\]

Looking at the second terms in the parentheses, we can see that $1+2+3+\dots+100$ occurs $100$ times. It goes horizontally and exists $100$ times vertically. Looking at the first terms in the parentheses, we can see that $1+2+3+\dots+100$ occurs $100$ times. It goes vertically and exists $100$ times horizontally.

Thus, we have: \[2\left(\dfrac{1+100}{2}\cdot 100\right).\]

This gives us: \[\boxed{\textbf{(D) } 1010000}.\]

Solution 2

\[\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j)  = \sum^{100}_{i=1} 100i+5050 = 100 \cdot 5050 + 5050 \cdot 100 = \boxed{1,010,000}\] (Vfire)


Solution 3

\[\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j)  = \sum^{100}_{i=1} \sum^{100}_{i=1} 2i =  (100)*(5050*2) =  \boxed{1,010,000}\]


See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png