Difference between revisions of "2018 AMC 12B Problems/Problem 13"

(Solution 13)
Line 25: Line 25:
 
<math>\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}</math>
 
<math>\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}</math>
  
==Solution==
+
==Solution 1 (Drawing an Accurate Diagram)==
 +
We can draw an accurate diagram by using centimeters and scaling everything down by a factor of <math>2</math>. The centroid is the intersection of the three medians in a triangle.
 +
 
 +
After connecting the <math>4</math> centroids, we see that the quadrilateral looks like a square with side length of <math>7</math>. However, we scaled everything down by a factor of <math>2</math>, so the length is <math>14</math>. The area of a square is <math>s^2</math>, so the area is: <cmath>\boxed{\textbf{(C) } 200}.</cmath>
 +
 
 +
==Solution 2==
 
The centroid of a triangle is <math>\frac{2}{3}</math> of the way from a vertex to the midpoint of the opposing side. Thus, the length of any diagonal of this quadrilateral is <math>20</math>. The diagonals are also parallel to sides of the square, so they are perpendicular to each other, and so the area of the quadrilateral is <math>\frac{20\cdot20}{2} = 200</math>, <math>\boxed{(E)}</math>.
 
The centroid of a triangle is <math>\frac{2}{3}</math> of the way from a vertex to the midpoint of the opposing side. Thus, the length of any diagonal of this quadrilateral is <math>20</math>. The diagonals are also parallel to sides of the square, so they are perpendicular to each other, and so the area of the quadrilateral is <math>\frac{20\cdot20}{2} = 200</math>, <math>\boxed{(E)}</math>.
  

Revision as of 18:13, 16 February 2018

Problem

Square $ABCD$ has side length $30$. Point $P$ lies inside the square so that $AP = 12$ and $BP = 26$. The centroids of $\triangle{ABP}$, $\triangle{BCP}$, $\triangle{CDP}$, and $\triangle{DAP}$ are the vertices of a convex quadrilateral. What is the area of that quadrilateral?

[asy] unitsize(120); pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3); draw(A--B--C--D--cycle); dot(P); defaultpen(fontsize(10pt)); draw(A--P--B); draw(C--P--D); label("$A$", A, W); label("$B$", B, W); label("$C$", C, E); label("$D$", D, E); label("$P$", P, N*1.5+E*0.5); dot(A); dot(B); dot(C); dot(D); [/asy]


$\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}$

Solution 1 (Drawing an Accurate Diagram)

We can draw an accurate diagram by using centimeters and scaling everything down by a factor of $2$. The centroid is the intersection of the three medians in a triangle.

After connecting the $4$ centroids, we see that the quadrilateral looks like a square with side length of $7$. However, we scaled everything down by a factor of $2$, so the length is $14$. The area of a square is $s^2$, so the area is: \[\boxed{\textbf{(C) } 200}.\]

Solution 2

The centroid of a triangle is $\frac{2}{3}$ of the way from a vertex to the midpoint of the opposing side. Thus, the length of any diagonal of this quadrilateral is $20$. The diagonals are also parallel to sides of the square, so they are perpendicular to each other, and so the area of the quadrilateral is $\frac{20\cdot20}{2} = 200$, $\boxed{(E)}$.

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png