Difference between revisions of "1986 AHSME Problems/Problem 1"

(Created page with "==Problem== <math>[x-(y-x)] - [(x-y) - x] =</math> <math>\textbf{(A)}\ 2y \qquad \textbf{(B)}\ 2x \qquad \textbf{(C)}\ -2y \qquad \textbf{(D)}\ -2x \qquad \textbf{(E)}\ 0 </mat...")
 
(Fixed the problem statement and added a solution with explanation)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
<math>[x-(y-x)] - [(x-y) - x] =</math>
+
<math>[x-(y-z)] - [(x-y) - z] =</math>
  
 
<math>\textbf{(A)}\ 2y \qquad
 
<math>\textbf{(A)}\ 2y \qquad
\textbf{(B)}\ 2x \qquad
+
\textbf{(B)}\ 2z \qquad
 
\textbf{(C)}\ -2y \qquad
 
\textbf{(C)}\ -2y \qquad
\textbf{(D)}\ -2x \qquad
+
\textbf{(D)}\ -2z \qquad
 
\textbf{(E)}\ 0 </math>     
 
\textbf{(E)}\ 0 </math>     
  
 
==Solution==
 
==Solution==
 
+
The expression becomes <math>(x-y+z)-(x-y-z) = x-y+z-x+y+z = 2z</math>, which is <math>\boxed{B}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 16:59, 1 April 2018

Problem

$[x-(y-z)] - [(x-y) - z] =$

$\textbf{(A)}\ 2y \qquad \textbf{(B)}\ 2z \qquad \textbf{(C)}\ -2y \qquad \textbf{(D)}\ -2z \qquad \textbf{(E)}\ 0$

Solution

The expression becomes $(x-y+z)-(x-y-z) = x-y+z-x+y+z = 2z$, which is $\boxed{B}$.

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png