Difference between revisions of "2018 AMC 12A Problems/Problem 20"

m (Solution 5 (Quick))
m (Solution 5 (Quick))
Line 37: Line 37:
 
== Solution 5 (Quick) ==
 
== Solution 5 (Quick) ==
 
From <math>AIME</math> cyclic we get <math>\angle{MEI} = \angle{MAI} = 45^\circ</math> and <math>\angle{MIE} = \angle{MAE} = 45^\circ</math>, so <math>\triangle{EMI}</math> is an isosceles right triangle.  
 
From <math>AIME</math> cyclic we get <math>\angle{MEI} = \angle{MAI} = 45^\circ</math> and <math>\angle{MIE} = \angle{MAE} = 45^\circ</math>, so <math>\triangle{EMI}</math> is an isosceles right triangle.  
 +
 
From <math>[EMI]=2</math> we get <math>EM=MI=2</math>.  
 
From <math>[EMI]=2</math> we get <math>EM=MI=2</math>.  
 +
 
Notice <math>\triangle{AEM} \cong \triangle{CIM}</math>, because <math>\angle{AEM}=180-\angle{AIM}=\angle{CIM}</math>, <math>EM=IM</math>, and <math>\angle{EAM}=\angle{ICM}=45^\circ</math>.  
 
Notice <math>\triangle{AEM} \cong \triangle{CIM}</math>, because <math>\angle{AEM}=180-\angle{AIM}=\angle{CIM}</math>, <math>EM=IM</math>, and <math>\angle{EAM}=\angle{ICM}=45^\circ</math>.  
 +
 
Let <math>CI=AE=x</math>, so <math>AI=3-x</math>.  
 
Let <math>CI=AE=x</math>, so <math>AI=3-x</math>.  
 +
 
By Pythagoras on <math>\triangle{EAI}</math> we have <math>x^2+(3-x)^2=EI^2=8</math>, and solve this to get <math>x=CI=\dfrac{3-\sqrt{7}}{2}</math> for a final answer of <math>3+7+2=\boxed{12}</math>.
 
By Pythagoras on <math>\triangle{EAI}</math> we have <math>x^2+(3-x)^2=EI^2=8</math>, and solve this to get <math>x=CI=\dfrac{3-\sqrt{7}}{2}</math> for a final answer of <math>3+7+2=\boxed{12}</math>.
  

Revision as of 01:33, 24 December 2018

Problem

Triangle $ABC$ is an isosceles right triangle with $AB=AC=3$. Let $M$ be the midpoint of hypotenuse $\overline{BC}$. Points $I$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $AI>AE$ and $AIME$ is a cyclic quadrilateral. Given that triangle $EMI$ has area $2$, the length $CI$ can be written as $\frac{a-\sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers and $b$ is not divisible by the square of any prime. What is the value of $a+b+c$?

$\textbf{(A) }9 \qquad \textbf{(B) }10 \qquad \textbf{(C) }11 \qquad \textbf{(D) }12 \qquad \textbf{(E) }13 \qquad$

Solution 1

Observe that $\triangle{EMI}$ is isosceles right ($M$ is the midpoint of diameter arc $EI$), so $MI=2,MC=\frac{3}{\sqrt{2}}$. With $\angle{MCI}=45^\circ$, we can use Law of Cosines to determine that $CI=\frac{3\pm\sqrt{7}}{2}$. The same calculations hold for $BE$ also, and since $CI<BE$, we deduce that $CI$ is the smaller root, giving the answer of $\boxed{12}$. (trumpeter)


Solution 2 (Using Ptolemy)

We first claim that $\triangle{EMI}$ is isosceles and right.

Proof: Construct $\overline{MF}\perp\overline{AB}$ and $\overline{MG}\perp\overline{AC}$. Since $\overline{AM}$ bisects $\angle{BAC}$, one can deduce that $MF=MG$. Then by AAS it is clear that $MI=ME$ and therefore $\triangle{EMI}$ is isosceles. Since quadrilateral $AIME$ is cyclic, one can deduce that $\angle{EMI}=90^\circ$. Q.E.D.

Since the area of $\triangle{EMI}$ is 2, we can find that $MI=ME=2$, $EI=2\sqrt{2}$

Since $M$ is the mid-point of $\overline{BC}$, it is clear that $AM=\frac{3\sqrt{2}}{2}$.

Now let $AE=a$ and $AI=b$. By Ptolemy's Theorem, in cyclic quadrilateral $AIME$, we have $2a+2b=6$. By Pythagorean Theorem, we have $a^2+b^2=8$. One can solve the simultaneous system and find $b=\frac{3+\sqrt{7}}{2}$. Then by deducting the length of $\overline{AI}$ from 3 we get $CI=\frac{3-\sqrt{7}}{2}$, giving the answer of $\boxed{12}$. (Surefire2019)

Solution 3 (More Elementary)

Like above, notice that $\triangle{EMI}$ is isosceles and right, which means that $\dfrac{ME \cdot MI}{2} = 2$, so $MI^2=4$ and $MI = 2$. Then construct $\overline{MF}\perp\overline{AB}$ and $\overline{MG}\perp\overline{AC}$ as well as $\overline{MI}$. It's clear that $MG^2+GI^2 = MI^2$ by Pythagorean, so knowing that $MG = \dfrac{AB}{2} = \dfrac{3}{2}$ allows one to solve to get $GI = \dfrac{\sqrt{7}}{2}$. By just looking at the diagram, $CI=AC-MF-GI=\dfrac{3-\sqrt{7}}{2}$. The answer is thus $3+7+2=12$.

Solution 4 (Coordinate Geometry)

Let $A$ lie on $(0,0)$, $E$ on $(0,y)$, $I$ on $(x,0)$, and $M$ on $(\frac{3}{2},\frac{3}{2})$. Since ${AIME}$ is cyclic, $\angle EMI$ (which is opposite of another right angle) must be a right angle; therefore, $\vec{ME} \cdot \vec{MI} = <\frac{-3}{2}, y-\frac{3}{2}> \cdot <x-\frac{3}{2}, -\frac{3}{2}> = 0$. Compute the dot product to arrive at the relation $y=3-x$. We can set up another equation involving the area of $\triangle EMI$ using the Shoelace Theorem. This is $2=(\frac{1}{2})[(\frac{3}{2})(y-\frac{3}{2})+(x)(-y)+(x+\frac{3}{2})(\frac{3}{2})]$. Multiplying, substituting $3-x$ for $y$, and simplifying, we get $x^2 -3x + \frac{1}{2}=0$. Thus, $(x,y)=$ $(\frac{3 \pm \sqrt{7}}{2},\frac{3 \mp \sqrt{7}}{2})$. But $AI>AE$, meaning $x=AI=\frac{3 + \sqrt{7}}{2} \rightarrow CI = 3-\frac{3 + \sqrt{7}}{2}=\frac{3 - \sqrt{7}}{2}$, and the final answer is $3+7+2=\boxed{12}$.

Solution 5 (Quick)

From $AIME$ cyclic we get $\angle{MEI} = \angle{MAI} = 45^\circ$ and $\angle{MIE} = \angle{MAE} = 45^\circ$, so $\triangle{EMI}$ is an isosceles right triangle.

From $[EMI]=2$ we get $EM=MI=2$.

Notice $\triangle{AEM} \cong \triangle{CIM}$, because $\angle{AEM}=180-\angle{AIM}=\angle{CIM}$, $EM=IM$, and $\angle{EAM}=\angle{ICM}=45^\circ$.

Let $CI=AE=x$, so $AI=3-x$.

By Pythagoras on $\triangle{EAI}$ we have $x^2+(3-x)^2=EI^2=8$, and solve this to get $x=CI=\dfrac{3-\sqrt{7}}{2}$ for a final answer of $3+7+2=\boxed{12}$.

See Also

2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png