Difference between revisions of "2017 AMC 12A Problems/Problem 21"
m (→Solution) |
Bochthenerd (talk | contribs) (→Solution) |
||
Line 32: | Line 32: | ||
with each <math>a_i</math> in <math>S</math>. <math>x</math> is a factor of <math>a_0</math>, and <math>a_0</math> is in <math>S</math>, so <math>x</math> has to be a factor of some element in <math>S</math>. There are no such integers left, so there can be no more additional elements. <math>\{-10,-5,-2,-1,0,1,2,5,10\}</math> has <math>9</math> elements <math>\to \boxed{\textbf{(D)}}</math> | with each <math>a_i</math> in <math>S</math>. <math>x</math> is a factor of <math>a_0</math>, and <math>a_0</math> is in <math>S</math>, so <math>x</math> has to be a factor of some element in <math>S</math>. There are no such integers left, so there can be no more additional elements. <math>\{-10,-5,-2,-1,0,1,2,5,10\}</math> has <math>9</math> elements <math>\to \boxed{\textbf{(D)}}</math> | ||
+ | |||
+ | ==Solution 2 (If you are short on time)== | ||
+ | |||
+ | By Rational Root Theorem, the only rational roots for this function we're dealing with must be in the form <math> \pm \fracp{q} </math>, where <math>p</math> and <math>q</math> are co-prime, <math>p</math> is a factor of <math>a_0</math> and <math>q</math> is a factor of <math>a_n</math>, in other words, all possible <math>\pm \fraca_0{a_n}</math> must be integer multiples of at least one integer root. We can easily see -1 is in <math>S</math> because of <math>10x + 10 = 0</math> has root <math>-1</math>. Since we want set <math>S</math> to be as large as possible, we let <math>p=10</math> and <math>q=1</math>, and quickly see that all possible integer roots are <math>\pm 1</math>, <math>\pm 2</math>, <math>\pm 5</math>, <math>\pm 10</math>, plus the <math>0</math> we started with, we get a total of <math>9</math> elements <math>\to \boxed{\textbf{(D)}}</math> | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=A|num-b=20|num-a=22}} | {{AMC12 box|year=2017|ab=A|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 12:56, 3 January 2019
Problem
A set is constructed as follows. To begin, . Repeatedly, as long as possible, if is an integer root of some polynomial for some , all of whose coefficients are elements of , then is put into . When no more elements can be added to , how many elements does have?
Solution
At first, .
At this point, no more elements can be added to . To see this, let
with each in . is a factor of , and is in , so has to be a factor of some element in . There are no such integers left, so there can be no more additional elements. has elements
Solution 2 (If you are short on time)
By Rational Root Theorem, the only rational roots for this function we're dealing with must be in the form $\pm \fracp{q}$ (Error compiling LaTeX. Unknown error_msg), where and are co-prime, is a factor of and is a factor of , in other words, all possible $\pm \fraca_0{a_n}$ (Error compiling LaTeX. Unknown error_msg) must be integer multiples of at least one integer root. We can easily see -1 is in because of has root . Since we want set to be as large as possible, we let and , and quickly see that all possible integer roots are , , , , plus the we started with, we get a total of elements
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.