2012 AMC 10A Problems/Problem 14

Revision as of 12:06, 24 June 2019 by Threepointonefour1 (talk | contribs) (Solution 1)

Problem

Chubby makes nonstandard checkerboards that have $31$ squares on each side. The checkerboards have a black square in every corner and alternate red and black squares along every row and column. How many black squares are there on such a checkerboard?

$\textbf{(A)}\ 480 \qquad\textbf{(B)}\ 481 \qquad\textbf{(C)}\ 482 \qquad\textbf{(D)}\ 483 \qquad\textbf{(E)}\ 484$

Solution 1

There are 15 rows with 15 red tiles, and 16 rows with 16 black tiles, so the answer is $15^2+16^2 =225+256= \boxed{\textbf{(B)}\ 481}$

Note: On getting $16^2$+$15^2$ you only need to calculate the units digit

Solution 2

We build the $31 \times 31$ checkerboard starting with a board of $30 \times 30$ that is exactly half black. There are $15 \cdot 30$ black tiles in this region.

Add to this $30 \times 30$ checkerboard a $1 \times 30$ strip on the bottom that has $15$ black tiles.

Add to this $31 \times 30$ checkerboard a $31 \times 1$ strip on the right that has $15 + 1$ black tiles.

In total, there are $15 \cdot 30 + 15 + 15 + 1 = 481$ tiles, giving an answer of $\boxed{\textbf{(B)}\ 481}$

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png