ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

2010 AMC 8 Problems

Revision as of 13:50, 4 August 2020 by Leapfrog (talk | contribs) (Problem 14)

Problem 1

At Euclid Middle School, the mathematics teachers are Miss Germain, Mr. Newton, and Mrs. Young. There are $11$ students in Mrs. Germain's class, $8$ students in Mr. Newton's class, and $9$ students in Mrs. Young's class taking the AMC 8 this year. How many mathematics students at Euclid Middle School are taking the contest?

$\textbf{(A)}\ 26 \qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 28\qquad\textbf{(D)}\ 29\qquad\textbf{(E)}\ 30$

Solution

Problem 2

If $a @ b = \frac{a\times b}{a+b}$ for $a,b$ positive integers, then what is $5 @10$?

$\textbf{(A)}\ \frac{3}{10} \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ \frac{10}{3} \qquad\textbf{(E)}\ 50$

Solution

Problem 3

The graph shows the price of five gallons of gasoline during the first ten months of the year. By what percent is the highest price more than the lowest price?

[asy] import graph; size(16.38cm); real lsf=2; pathpen=linewidth(0.7); pointpen=black; pen fp = fontsize(10); pointfontpen=fp; real xmin=-1.33,xmax=11.05,ymin=-9.01,ymax=-0.44; pen ycycyc=rgb(0.55,0.55,0.55); pair A=(1,-6), B=(1,-2), D=(1,-5.8), E=(1,-5.6), F=(1,-5.4), G=(1,-5.2), H=(1,-5), J=(1,-4.8), K=(1,-4.6), L=(1,-4.4), M=(1,-4.2), N=(1,-4), P=(1,-3.8), Q=(1,-3.6), R=(1,-3.4), S=(1,-3.2), T=(1,-3), U=(1,-2.8), V=(1,-2.6), W=(1,-2.4), Z=(1,-2.2), E_1=(1.4,-2.6), F_1=(1.8,-2.6), O_1=(14,-6), P_1=(14,-5), Q_1=(14,-4), R_1=(14,-3), S_1=(14,-2), C_1=(1.4,-6), D_1=(1.8,-6), G_1=(2.4,-6), H_1=(2.8,-6), I_1=(3.4,-6), J_1=(3.8,-6), K_1=(4.4,-6), L_1=(4.8,-6), M_1=(5.4,-6), N_1=(5.8,-6), T_1=(6.4,-6), U_1=(6.8,-6), V_1=(7.4,-6), W_1=(7.8,-6), Z_1=(8.4,-6), A_2=(8.8,-6), B_2=(9.4,-6), C_2=(9.8,-6), D_2=(10.4,-6), E_2=(10.8,-6), L_2=(2.4,-3.2), M_2=(2.8,-3.2), N_2=(3.4,-4), O_2=(3.8,-4), P_2=(4.4,-3.6), Q_2=(4.8,-3.6), R_2=(5.4,-3.6), S_2=(5.8,-3.6), T_2=(6.4,-3.4), U_2=(6.8,-3.4), V_2=(7.4,-3.8), W_2=(7.8,-3.8), Z_2=(8.4,-2.8), A_3=(8.8,-2.8), B_3=(9.4,-3.2), C_3=(9.8,-3.2), D_3=(10.4,-3.8), E_3=(10.8,-3.8); filldraw(C_1--E_1--F_1--D_1--cycle,ycycyc); filldraw(G_1--L_2--M_2--H_1--cycle,ycycyc); filldraw(I_1--N_2--O_2--J_1--cycle,ycycyc); filldraw(K_1--P_2--Q_2--L_1--cycle,ycycyc); filldraw(M_1--R_2--S_2--N_1--cycle,ycycyc); filldraw(T_1--T_2--U_2--U_1--cycle,ycycyc); filldraw(V_1--V_2--W_2--W_1--cycle,ycycyc); filldraw(Z_1--Z_2--A_3--A_2--cycle,ycycyc); filldraw(B_2--B_3--C_3--C_2--cycle,ycycyc); filldraw(D_2--D_3--E_3--E_2--cycle,ycycyc); D(B--A,linewidth(0.4)); D(H--(8,-5),linewidth(0.4)); D(N--(8,-4),linewidth(0.4)); D(T--(8,-3),linewidth(0.4)); D(B--(8,-2),linewidth(0.4)); D(B--S_1); D(T--R_1); D(N--Q_1); D(H--P_1); D(A--O_1); D(C_1--E_1); D(E_1--F_1); D(F_1--D_1); D(D_1--C_1); D(G_1--L_2); D(L_2--M_2); D(M_2--H_1); D(H_1--G_1); D(I_1--N_2); D(N_2--O_2); D(O_2--J_1); D(J_1--I_1); D(K_1--P_2); D(P_2--Q_2); D(Q_2--L_1); D(L_1--K_1); D(M_1--R_2); D(R_2--S_2); D(S_2--N_1); D(N_1--M_1); D(T_1--T_2); D(T_2--U_2); D(U_2--U_1); D(U_1--T_1); D(V_1--V_2); D(V_2--W_2); D(W_2--W_1); D(W_1--V_1); D(Z_1--Z_2); D(Z_2--A_3); D(A_3--A_2); D(A_2--Z_1); D(B_2--B_3); D(B_3--C_3); D(C_3--C_2); D(C_2--B_2); D(D_2--D_3); D(D_3--E_3); D(E_3--E_2); D(E_2--D_2); label("0",(0.88,-5.91),SE*lsf,fp); label("$ 5$",(0.3,-4.84),SE*lsf,fp); label("$ 10$",(0.2,-3.84),SE*lsf,fp); label("$ 15$",(0.2,-2.85),SE*lsf,fp); label("$ 20$",(0.2,-1.85),SE*lsf,fp); label("$\mathrm{Price}$",(0.16,-3.45),SE*lsf,fp); label("$1$",(1.54,-5.97),SE*lsf,fp); label("$2$",(2.53,-5.95),SE*lsf,fp); label("$3$",(3.53,-5.94),SE*lsf,fp); label("$4$",(4.55,-5.94),SE*lsf,fp); label("$5$",(5.49,-5.95),SE*lsf,fp); label("$6$",(6.53,-5.95),SE*lsf,fp); label("$7$",(7.55,-5.95),SE*lsf,fp); label("$8$",(8.52,-5.95),SE*lsf,fp); label("$9$",(9.57,-5.97),SE*lsf,fp); label("$10$",(10.56,-5.94),SE*lsf,fp); label("Month",(7.14,-6.43),SE*lsf,fp); D(A,linewidth(1pt)); D(B,linewidth(1pt)); D(D,linewidth(1pt)); D(E,linewidth(1pt)); D(F,linewidth(1pt)); D(G,linewidth(1pt)); D(H,linewidth(1pt)); D(J,linewidth(1pt)); D(K,linewidth(1pt)); D(L,linewidth(1pt)); D(M,linewidth(1pt)); D(N,linewidth(1pt)); D(P,linewidth(1pt)); D(Q,linewidth(1pt)); D(R,linewidth(1pt)); D(S,linewidth(1pt)); D(T,linewidth(1pt)); D(U,linewidth(1pt)); D(V,linewidth(1pt)); D(W,linewidth(1pt)); D(Z,linewidth(1pt)); D(E_1,linewidth(1pt)); D(F_1,linewidth(1pt)); D(O_1,linewidth(1pt)); D(P_1,linewidth(1pt)); D(Q_1,linewidth(1pt)); D(R_1,linewidth(1pt)); D(S_1,linewidth(1pt)); D(C_1,linewidth(1pt)); D(D_1,linewidth(1pt)); D(G_1,linewidth(1pt)); D(H_1,linewidth(1pt)); D(I_1,linewidth(1pt)); D(J_1,linewidth(1pt)); D(K_1,linewidth(1pt)); D(L_1,linewidth(1pt)); D(M_1,linewidth(1pt)); D(N_1,linewidth(1pt)); D(T_1,linewidth(1pt)); D(U_1,linewidth(1pt)); D(V_1,linewidth(1pt)); D(W_1,linewidth(1pt)); D(Z_1,linewidth(1pt)); D(A_2,linewidth(1pt)); D(B_2,linewidth(1pt)); D(C_2,linewidth(1pt)); D(D_2,linewidth(1pt)); D(E_2,linewidth(1pt)); D(L_2,linewidth(1pt)); D(M_2,linewidth(1pt)); D(N_2,linewidth(1pt)); D(O_2,linewidth(1pt)); D(P_2,linewidth(1pt)); D(Q_2,linewidth(1pt)); D(R_2,linewidth(1pt)); D(S_2,linewidth(1pt)); D(T_2,linewidth(1pt)); D(U_2,linewidth(1pt)); D(V_2,linewidth(1pt)); D(W_2,linewidth(1pt)); D(Z_2,linewidth(1pt)); D(A_3,linewidth(1pt)); D(B_3,linewidth(1pt)); D(C_3,linewidth(1pt)); D(D_3,linewidth(1pt)); D(E_3,linewidth(1pt)); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]

$\textbf{(A)}\ 50 \qquad \textbf{(B)}\ 62 \qquad \textbf{(C)}\ 70 \qquad \textbf{(D)}\ 89 \qquad \textbf{(E)}\ 100$

Solution

Problem 4

What is the sum of the mean, median, and mode of the numbers $2,3,0,3,1,4,0,3$?

$\textbf{(A)}\ 6.5 \qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 7.5\qquad\textbf{(D)}\ 8.5\qquad\textbf{(E)}\ 9$

Solution

Problem 5

Alice needs to replace a light bulb located $10$ centimeters below the ceiling in her kitchen. The ceiling is $2.4$ meters above the floor. Alice is $1.5$ meters tall and can reach $46$ centimeters above the top of her head. Standing on a stool, she can just reach the light bulb. What is the height of the stool, in centimeters?

$\textbf{(A)}\ 32 \qquad\textbf{(B)}\ 34\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 38\qquad\textbf{(E)}\ 40$

Solution

Problem 6

Which of the following figures has the greatest number of lines of symmetry?

$\textbf{(A)}\ \text{equilateral triangle}$ $\textbf{(B)}\ \text{non-square rhombus}$ $\textbf{(C)}\ \text{non-square rectangle}$ $\textbf{(D)}\ \text{isosceles trapezoid}$ $\textbf{(E)}\ \text{square}$

Solution

Problem 7

Using only pennies, nickels, dimes, and quarters, what is the smallest number of coins Freddie would need so he could pay any amount of money less than a dollar?

$\textbf{(A)}\ 6 \qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 25\qquad\textbf{(E)}\ 99$

Solution

Problem 8

As Emily is riding her bicycle on a long straight road, she spots Emerson skating in the same direction $1/2$ mile in front of her. After she passes him, she can see him in her rear mirror until he is $1/2$ mile behind her. Emily rides at a constant rate of $12$ miles per hour, and Emerson skates at a constant rate of $8$ miles per hour. For how many minutes can Emily see Emerson?

$\textbf{(A)}\ 6 \qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 16$

Solution

Problem 9

Ryan got $80\%$ of the problems correct on a $25$-problem test, $90\%$ on a $40$-problem test, and $70\%$ on a $10$-problem test. What percent of all the problems did Ryan answer correctly?

$\textbf{(A)}\ 64 \qquad\textbf{(B)}\ 75\qquad\textbf{(C)}\ 80\qquad\textbf{(D)}\ 84\qquad\textbf{(E)}\ 86$

Solution

Problem 10

Six pepperoni circles will exactly fit across the diameter of a $12$-inch pizza when placed. If a total of $24$ circles of pepperoni are placed on this pizza without overlap, what fraction of the pizza is covered by pepperoni?

$\textbf{(A)}\ \frac 12 \qquad\textbf{(B)}\ \frac 23 \qquad\textbf{(C)}\ \frac 34 \qquad\textbf{(D)}\ \frac 56 \qquad\textbf{(E)}\ \frac 78$

Solution

Problem 11

The top of one tree is $16$ feet higher than the top of another tree. The heights of the two trees are in the ratio $3:4$. In feet, how tall is the taller tree?

$\textbf{(A)}\ 48 \qquad\textbf{(B)}\ 64 \qquad\textbf{(C)}\ 80 \qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 112$

Solution

Problem 12

Of the $500$ balls in a large bag, $80\%$ are red and the rest are blue. How many of the red balls must be removed from the bag so that $75\%$ of the remaining balls are red?

$\textbf{(A)}\ 25 \qquad\textbf{(B)}\ 50 \qquad\textbf{(C)}\ 75 \qquad\textbf{(D)}\ 100\qquad\textbf{(E)}\ 150$

Solution

Problem 13

The lengths of the sides of a triangle in inches are three consecutive integers. The length of the shortest side is $30\%$ of the perimeter. What is the length of the longest side?

$\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11$

Solution

Problem 14

What is the sum of the prime factors of $your dad$?

$\textbf{(A)}\ 67 \qquad\textbf{(B)}\ 75\qquad\textbf{(C)}\ 77\qquad\textbf{(D)}\ 201\qquad\textbf{(E)}\ 210$

Solution

Problem 15

A jar contains five different colors of gumdrops: $30\%$ are blue, $20\%$ are brown, $15\%$ red, $10\%$ yellow, and the other $30$ gumdrops are green. If half of the blue gumdrops are replaced with brown gumdrops, how many gumdrops will be brown?

$\textbf{(A)}\ 35 \qquad\textbf{(B)}\ 36\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 64$

Solution

Problem 16

A square and a circle have the same area. What is the ratio of the side length of the square to the radius of the circle?

$\textbf{(A)}\  \frac{\sqrt{\pi}}{2}  \qquad\textbf{(B)}\ \sqrt{\pi} \qquad\textbf{(C)}\ \pi \qquad\textbf{(D)}\ 2\pi \qquad\textbf{(E)}\ \pi^{2}$

Solution

Problem 17

The diagram shows an octagon consisting of $10$ unit squares. The portion below $\overline{PQ}$ is a unit square and a triangle with base $5$. If $\overline{PQ}$ bisects the area of the octagon, what is the ratio $\frac{XQ}{QY}$?

[asy] import graph; size(300);  real lsf = 0.5;  pen dp = linewidth(0.7) + fontsize(10);  defaultpen(dp);  pen ds = black;  pen xdxdff = rgb(0.49,0.49,1); draw((0,0)--(6,0),linewidth(1.2pt));  draw((0,0)--(0,1),linewidth(1.2pt));  draw((0,1)--(1,1),linewidth(1.2pt));  draw((1,1)--(1,2),linewidth(1.2pt));  draw((1,2)--(5,2),linewidth(1.2pt));  draw((5,2)--(5,1),linewidth(1.2pt));  draw((5,1)--(6,1),linewidth(1.2pt));  draw((6,1)--(6,0),linewidth(1.2pt));  draw((1,1)--(5,1),linewidth(1.2pt)); draw((1,1)--(1,0),linewidth(1.2pt));  draw((2,2)--(2,0),linewidth(1.2pt));  draw((3,2)--(3,0),linewidth(1.2pt));  draw((4,2)--(4,0),linewidth(1.2pt));  draw((5,1)--(5,0),linewidth(1.2pt)); draw((0,0)--(5,1.5),linewidth(1.2pt)); dot((0,0),ds); label("$P$", (-0.23,-0.26),NE*lsf);  dot((0,1),ds);  dot((1,1),ds);  dot((1,2),ds);  dot((5,2),ds);  label("$X$", (5.14,2.02),NE*lsf); dot((5,1),ds);  label("$Y$", (5.12,1.14),NE*lsf); dot((6,1),ds);  dot((6,0),ds); dot((1,0),ds); dot((2,0),ds); dot((3,0),ds);  dot((4,0),ds); dot((5,0),ds); dot((2,2),ds); dot((3,2),ds);  dot((4,2),ds); dot((5,1.5),ds);  label("$Q$", (5.14,1.51),NE*lsf);  clip((-4.19,-5.52)--(-4.19,6.5)--(10.08,6.5)--(10.08,-5.52)--cycle); [/asy]

$\textbf{(A)}\ \frac 25 \qquad \textbf{(B)}\ \frac 12 \qquad \textbf{(C)}\ \frac 35 \qquad \textbf{(D)}\ \frac 23 \qquad \textbf{(E)}\ \frac 34$

Solution

Problem 18

A decorative window is made up of a rectangle with semicircles on either end. The ratio of $AD$ to $AB$ is $3:2$, and $AB$ is 30 inches. What is the ratio of the area of the rectangle to the combined areas of the semicircles?

[asy] import graph; size(5cm); real lsf=0; pen dps=linewidth(0.7)+fontsize(8); defaultpen(dps); pen ds=black; real xmin=-4.27,xmax=14.73,ymin=-3.22,ymax=6.8; draw((0,4)--(0,0)); draw((0,0)--(2.5,0)); draw((2.5,0)--(2.5,4)); draw((2.5,4)--(0,4)); draw(shift((1.25,4))*xscale(1.25)*yscale(1.25)*arc((0,0),1,0,180)); draw(shift((1.25,0))*xscale(1.25)*yscale(1.25)*arc((0,0),1,-180,0)); dot((0,0),ds); label("$A$",(-0.26,-0.23),NE*lsf); dot((2.5,0),ds); label("$B$",(2.61,-0.26),NE*lsf); dot((0,4),ds); label("$D$",(-0.26,4.02),NE*lsf); dot((2.5,4),ds); label("$C$",(2.64,3.98),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]

$\textbf{(A)}\ 2:3 \qquad\textbf{(B)}\ 3:2\qquad\textbf{(C)}\ 6:\pi \qquad\textbf{(D)}\ 9: \pi \qquad\textbf{(E)}\ 30 : \pi$

Solution

Problem 19

The two circles pictured have the same center $C$. Chord $\overline{AD}$ is tangent to the inner circle at $B$, $AC$ is $10$, and chord $\overline{AD}$ has length $16$. What is the area between the two circles?

[asy] unitsize(45); import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1); draw((2,0.15)--(1.85,0.15)--(1.85,0)--(2,0)--cycle); draw(circle((2,1),2.24)); draw(circle((2,1),1)); draw((0,0)--(4,0)); draw((0,0)--(2,1)); draw((2,1)--(2,0)); draw((2,1)--(4,0)); dot((0,0),ds); label("$A$", (-0.19,-0.23),NE*lsf); dot((2,0),ds); label("$B$", (1.97,-0.31),NE*lsf); dot((2,1),ds); label("$C$", (1.96,1.09),NE*lsf); dot((4,0),ds); label("$D$", (4.07,-0.24),NE*lsf); clip((-3.1,-7.72)--(-3.1,4.77)--(11.74,4.77)--(11.74,-7.72)--cycle); [/asy]

$\textbf{(A)}\ 36 \pi \qquad\textbf{(B)}\ 49 \pi\qquad\textbf{(C)}\ 64 \pi\qquad\textbf{(D)}\ 81 \pi\qquad\textbf{(E)}\ 100 \pi$

Solution

Problem 20

In a room, $2/5$ of the people are wearing gloves, and $3/4$ of the people are wearing hats. What is the minimum number of people in the room wearing both a hat and a glove?

$\textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 20$

Solution

Problem 21

Hui is an avid reader. She bought a copy of the best seller Math is Beautiful. On the first day, Hui read $1/5$ of the pages plus $12$ more, and on the second day she read $1/4$ of the remaining pages plus $15$ pages. On the third day she read $1/3$ of the remaining pages plus $18$ pages. She then realized that there were only $62$ pages left to read, which she read the next day. How many pages are in this book?

$\textbf{(A)}\ 120 \qquad\textbf{(B)}\ 180\qquad\textbf{(C)}\ 240\qquad\textbf{(D)}\ 300\qquad\textbf{(E)}\ 360$

Solution

Problem 22

The hundreds digit of a three-digit number is $2$ more than the units digit. The digits of the three-digit number are reversed, and the result is subtracted from the original three-digit number. What is the units digit of the result?

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8$

Solution

Problem 23

Semicircles $POQ$ and $ROS$ pass through the center $O$. What is the ratio of the combined areas of the two semicircles to the area of circle $O$? [asy] import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label("$ P(-1,1) $",(-2.57,2.17),SE*lsf); label("$ Q(1,1) $",(1.55,2.21),SE*lsf); label("$ R(-1,-1) $",(-2.72,-1.45),SE*lsf); label("$S(1,-1)$",(1.59,-1.49),SE*lsf);  dot((0,0),ds); label("$O$",(-0.24,-0.35),NE*lsf); dot((1.41,1.41),ds); dot((-1.4,1.43),ds); dot((1.4,-1.42),ds); dot((-1.42,-1.41),ds);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy] $\textbf{(A)}\ \frac{\sqrt 2}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{2}{\pi}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{\sqrt 2}{2}$

Solution

Problem 24

What is the correct ordering of the three numbers, $10^8$, $5^{12}$, and $2^{24}$?

$\textbf{(A)}\ 2{}^2{}^4<10^8<5{}^1{}^2$

$\textbf{(B)}\ 2{}^2{}^4<5{}^1{}^2<10^8$

$\textbf{(C)}\ 5{}^1{}^2<2{}^2{}^4<10^8$

$\textbf{(D)}\ 10^8<5{}^1{}^2<2{}^2{}^4$

$\textbf{(E)}\ 10^8<2{}^2{}^4<5{}^1{}^2$

Solution

Problem 25

Everyday at school, Jo climbs a flight of $6$ stairs. Jo can take the stairs $1$, $2$, or $3$ at a time. For example, Jo could climb $3$, then $1$, then $2$. In how many ways can Jo climb the stairs?

$\textbf{(A)}\ 13 \qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 24$

Solution