2020 AIME II Problems/Problem 13
Problem
Convex pentagon has side lengths , , and . Moreover, the pentagon has an inscribed circle (a circle tangent to each side of the pentagon). Find the area of .
Solutions (Misplaced problem?)
Assume the incircle touches , , , , at respectively. Then let , , . So we have , and =7, solve it we have , , . Let the center of the incircle be , by SAS we can proof triangle is congruent to triangle , and triangle is congruent to triangle . Then we have , . Extend , cross ray at , ray at , then by AAS we have triangle is congruent to triangle . Thus . Let , then . So by law of cosine in triangle and triangle we can obtain , solved it gives us , which yield triangle to be a triangle with side length 15, 15, 24, draw a height from to divides it into two triangles with side lengths 9, 12, 15, so the area of triangle is 108. Triangle is a triangle with side lengths 6, 8, 10, so the area of two of them is 48, so the area of pentagon is .
-Fanyuchen20020715
Solution 2 (Guess)
This pentagon is very close to a regular pentagon with side lengths . The area of a regular pentagon with side lengths is . is slightly greater than given that is slightly less than . is then slightly greater than . We will approximate that to be . The area is now roughly , but because the actual pentagon is not regular, but has the same perimeter of the regular one that we are comparing to we can say that this is an overestimate on the area and turn the into thus turning the area into which is and since is a multiple of the semiperimeter , we can safely say that the answer is most likely .
Video Solution
https://youtu.be/bz5N-jI2e0U?t=327
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.