2005 AIME II Problems/Problem 7

Problem

Let $x=\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}.$ Find $(x+1)^{48}$.

Solution

We note that in general,

${} (\sqrt[2^n]{5} + 1)(\sqrt[2^n]{5} - 1) = (\sqrt[2^n]{5})^2 - 1^2 = \sqrt[2^{n-1}]{5} - 1$.

It now becomes apparent that if we multiply the numerator and denominator of $\frac{4}{ (\sqrt{5}+1) (\sqrt[4]{5}+1) (\sqrt[8]{5}+1) (\sqrt[16]{5}+1) }$ by $(\sqrt[16]{5} - 1)$, the denominator will telescope to $\sqrt[1]{5} - 1 = 4$, so

$x = \frac{4(\sqrt[16]{5} - 1)}{4} = \sqrt[16]{5} - 1$.

It follows that $(x + 1)^{48} = (\sqrt[16]5)^{48} = 5^3 = 125$.

See Also

2005 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png