2017 AMC 10A Problems/Problem 25

Revision as of 17:10, 5 August 2022 by Mrthinker (talk | contribs) (Solution 1)

Problem

How many integers between $100$ and $999$, inclusive, have the property that some permutation of its digits is a multiple of $11$ between $100$ and $999?$ For example, both $121$ and $211$ have this property.

$\mathrm{\textbf{(A)} \ }226\qquad \mathrm{\textbf{(B)} \ } 243 \qquad \mathrm{\textbf{(C)} \ } 270 \qquad \mathrm{\textbf{(D)} \ }469\qquad \mathrm{\textbf{(E)} \ } 486$

Solution 1

There are 81 multiples of 11 between $100$ and $999$ inclusive. Some have digits repeated twice, making 3 permutations.

Others that have no repeated digits have 6 permutations, but switching the hundreds and units digits also yield a multiple of 11. Switching shows we have overcounted by a factor of 2, so assign $6 \div 2 = 3$ permutations to each multiple.

There are now 81*3 = 243 permutations, but we have overcounted*. Some multiples of 11 have $0$ as a digit. Since $0$ cannot be the digit of the hundreds place, we must subtract a permutation for each.

There are 110, 220, 330 ... 990, yielding 9 extra permutations

Also, there are 209, 308, 407...902, yielding 8 more permutations.

Now, just subtract these 17 from the total (243) to get 226. $\boxed{\textbf{(A) } 226}$

  • If short on time, observe that 226 is the only answer choice less than 243, and therefore is the only feasible answer.

Solution 2

We note that we only have to consider multiples of $11$ and see how many valid permutations each has. We can do casework on the number of repeating digits that the multiple of $11$ has:

$\textbf{Case 1:}$ All three digits are the same. By inspection, we find that there are no multiples of $11$ here.

$\textbf{Case 2:}$ Two of the digits are the same, and the third is different.

$\textbf{Case 2a:}$ There are $8$ multiples of $11$ without a zero that have this property: $121$, $242$, $363$, $484$, $616$, $737$, $858$, $979$. Each contributes $3$ valid permutations, so there are $8 \cdot 3 = 24$ permutations in this subcase.

$\textbf{Case 2b:}$ There are $9$ multiples of $11$ with a zero that have this property: $110$, $220$, $330$, $440$, $550$, $660$, $770$, $880$, $990$. Each one contributes $2$ valid permutations (the first digit can't be zero), so there are $9 \cdot 2 = 18$ permutations in this subcase.

$\textbf{Case 3:}$ All the digits are different. Since there are $\frac{990-110}{11}+1 = 81$ multiples of $11$ between $100$ and $999$, there are $81-8-9 = 64$ multiples of $11$ remaining in this case. However, $8$ of them contain a zero, namely $209$, $308$, $407$, $506$, $605$, $704$, $803$, and $902$. Each of those multiples of $11$ contributes $2 \cdot 2=4$ valid permutations, but we overcounted by a factor of $2$; every permutation of $209$, for example, is also a permutation of $902$. Therefore, there are $8 \cdot 4 / 2 = 16$. Therefore, there are $64-8=56$ remaining multiples of $11$ without a $0$ in this case. Each one contributes $3! = 6$ valid permutations, but once again, we overcounted by a factor of $2$ (note that if a number ABC is a multiple of $11$, then so is CBA). Therefore, there are $56 \cdot 6 / 2 = 168$ valid permutations in this subcase.

Adding up all the permutations from all the cases, we have $24+18+16+168 = \boxed{\textbf{(A) } 226}$.

Solution 3

We can first overcount and then subtract. We know that there are $81$ multiples of $11$.

We can then multiply by $6$ for each permutation of these multiples. (Yet some multiples do not have six distinct permutations.)

Now divide by $2$, because if a number $abc$ with digits $a$, $b$, and $c$ is a multiple of $11$, then $cba$ is also a multiple of $11$ so we have counted the same permutations twice.

Basically, each multiple of $11$ has its own $3$ permutations (say $abc$ has $abc$ $acb$ and $bac$ whereas $cba$ has $cba$ $cab$ and $bca$). We know that each multiple of $11$ has at least $3$ permutations because it cannot have $3$ repeating digits.

Hence we have $243$ permutations without subtracting for overcounting. Now note that we overcounted cases in which we have $0$'s at the start of each number. So, in theory, we could just answer $A$ and then move on.

If we want to solve it, then we continue.

We overcounted cases where the middle digit of the number is $0$ and the last digit is $0$.

Note that we assigned each multiple of $11$ three permutations.

The last digit is $0$ gives $9$ possibilities where we overcounted by $1$ permutation for each of $110, 220, ... , 990$.

The middle digit is $0$ gives $8$ possibilities where we overcount by $1$. $605, 704, 803, 902$ and $506, 407, 308, 209$

Subtracting $17$ gives $\boxed{\textbf{(A) } 226}$.

Now, we may ask if there is further overlap (i.e if two of $abc$ and $bac$ and $acb$ were multiples of $11$). Thankfully, using divisibility rules, this can never happen, as taking the divisibility rule mod $11$ and adding, we get that $2a$, $2b$, or $2c$ is congruent to $0\ (mod\ 11)$. Since $a, b, c$ are digits, this can never happen as none of them can equal $11$ and they can't equal $0$ as they are the leading digit of a three-digit number in each of the cases.

Solution 4 (1 but quicker)

The smallest multiple of $11$ above $100$ is $110 = 11 \cdot 10$, while the largest multiple of $11$ less than $999$ is $990 = 11 \cdot 90$. This means there are $90 - 10 + 1 = 81$ multiples of $11$ between $100$ and $999$.

As there are $3$ permutations for each multiple, we have $81 * 3 = 243$. However, we have overcounted, as numbers like $099$ shouldn't be counted. Looking at the answer choices, we notice there is only one that is less than $243$, and so we have our answer as $\boxed{\textbf{(A) } 226}$.

Solution 5 (Fastest)

We know there are at most $81 * 3 = 243$, but there must be overcount. Obviously, answer is $\boxed{\textbf{(A) } 226}$, since it is the only answer less than $243$.

- Little


Video Solution

Two different variations on solving it. https://youtu.be/z5KNZEwmrWM

https://youtu.be/MBcHwu30MX4 -Video Solution by Richard Rusczyk

https://youtu.be/Ly69GHOq9Yw

~savannahsolver

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png