2022 AIME I Problems/Problem 10
Contents
Problem
Three spheres with radii ,
, and
are mutually externally tangent. A plane intersects the spheres in three congruent circles centered at
,
, and
, respectively, and the centers of the spheres all lie on the same side of this plane. Suppose that
. Find
.
Diagrams
Solution 1
We let be the plane that passes through the spheres and
and
be the centers of the spheres with radii
and
. We take a cross-section that contains
and
, which contains these two spheres but not the third. Because the plane cuts out congruent circles, they have the same radius and from the given information,
.
Solution 2
Let the distance between the center of the sphere to the center of those circular intersections as separately.
. According to the problem, we have
. After solving we have
, plug this back to
The desired value is
~bluesoul
Solution 3
Denote by the radius of three congruent circles formed by the cutting plane.
Denote by
,
,
the centers of three spheres that intersect the plane to get circles centered at
,
,
, respectively.
Because three spheres are mutually tangent, ,
.
We have ,
,
.
Because and
are perpendicular to the plane,
is a right trapezoid, with
.
Hence,
Recall that
Hence, taking , we get
Solving (1) and (3), we get and
.
Thus, .
Thus, .
Because and
are perpendicular to the plane,
is a right trapezoid, with
.
Therefore,
In our solution, we do not use the conditio that spheres
and
are externally tangent. This condition is redundant in solving this problem.
~Steven Chen (www.professorcheneeu.com)
Video Solution
https://www.youtube.com/watch?v=SqLiV2pbCpY&t=15s
~Steven Chen (www.professorcheneeu.com)
Video Solution 2 (Mathematical Dexterity)
https://www.youtube.com/watch?v=HbBU13YiopU
See Also
2022 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.