1968 AHSME Problems/Problem 23

Revision as of 20:18, 17 July 2024 by Thepowerful456 (talk | contribs) (made the boxed solution correspond to the derived solution)

Problem

If all the logarithms are real numbers, the equality $log(x+3)+log(x-1)=log(x^2-2x-3)$ is satisfied for:

$\text{(A) all real values of }x \quad\\ \text{(B) no real values of } x\quad\\ \text{(C) all real values of } x \text{ except } x=0\quad\\ \text{(D) no real values of } x \text{ except } x=0\quad\\ \text{(E) all real values of } x \text{ except } x=1$


Solution

$\fbox{B}$

Solution 2

From the given we have \[\log(x+3)+\log(x-1)=\log(x^2-2x-3)\] \[\log(x^2+2x-3)=\log(x^2-2x-3)\] \[x^2+2x-3=x^2-2x-3\] \[x=0\] However substituing into $\log(x-1)$ gets a negative argument, which is impossible $\boxed{B}$.

~ Nafer

See also

1968 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png