2023 AMC 10A Problems/Problem 24

Revision as of 22:55, 9 November 2023 by Ryanjwang (talk | contribs) (Solution)

Problem

Six regular hexagonal blocks of side length 1 unit are arranged inside a regular hexagonal frame. Each block lies along an inside edge of the frame and is aligned with two other blocks, as shown in the figure below. The distance from any corner of the frame to the nearest vertex of a block is $\frac{3}{7}$ unit. What is the area of the region inside the frame not occupied by the blocks? [asy] unitsize(1cm); draw(scale(3)*polygon(6)); filldraw(shift(dir(0)*2+dir(120)*0.4)*polygon(6), lightgray); filldraw(shift(dir(60)*2+dir(180)*0.4)*polygon(6), lightgray); filldraw(shift(dir(120)*2+dir(240)*0.4)*polygon(6), lightgray); filldraw(shift(dir(180)*2+dir(300)*0.4)*polygon(6), lightgray); filldraw(shift(dir(240)*2+dir(360)*0.4)*polygon(6), lightgray); filldraw(shift(dir(300)*2+dir(420)*0.4)*polygon(6), lightgray); [/asy] $\textbf{(A)}~\frac{13 \sqrt{3}}{3}\qquad\textbf{(B)}~\frac{216 \sqrt{3}}{49}\qquad\textbf{(C)}~\frac{9 \sqrt{3}}{2} \qquad\textbf{(D)}~ \frac{14 \sqrt{3}}{3}\qquad\textbf{(E)}~\frac{243 \sqrt{3}}{49}$

Solution 1

[asy] unitsize(1cm);  pair A, B, C, D, E, F, W,X,Y,Z; real bigSide = 3; real smallSide = 1; real angle = 60; // Each external angle for the hexagon real offset = 3/7; // Offset for the smaller hexagons  // Function to draw a hexagon given a starting point and side length void drawHexagon(pair start, real side) {     pair current = start;     for (int i = 0; i < 6; ++i) {         pair next = current + side * dir(angle * i);         draw(current--next);         current = next;     }     draw(current--start); // Close the hexagon }  // Define the first vertex of the big hexagon A = (0,0);  // Calculate the other vertices of the big hexagon B = A + bigSide * dir(0); C = B + bigSide * dir(angle); D = C + bigSide * dir(2*angle); E = D + bigSide * dir(3*angle); F = E + bigSide * dir(4*angle);  // Draw the big hexagon drawHexagon(A, bigSide);  // Function to calculate the center of a side given two vertices pair sideCenter(pair start, pair end) {     return (start + end)/2; }  // Draw the smaller hexagons drawHexagon(A + offset * dir(0), smallSide); drawHexagon(B - smallSide * dir(0)+offset*dir(60), smallSide); drawHexagon(C - smallSide * dir(0)-dir(60)+dir(120)*3/7, smallSide); drawHexagon(D - 2*smallSide*dir(120)-(2+3/7)*smallSide, smallSide); drawHexagon(E - 2*smallSide*dir(60)+smallSide-3/7*dir(60), smallSide); drawHexagon(F + smallSide*dir(-60)+(3/7)*dir(-60), smallSide);  // Optionally, label the vertices of the big hexagon label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, E); label("$D$", D, NE); label("$E$", E, NW); label("$F$", F, W);  void drawTrap(pair W, real side, pen p) {   X = W+(3/7)*side*dir(0);   Y = X+(4/7)*side*dir(60);   Z = Y - side*dir(0);   draw(W--X, p);   draw(X--Y,p);   draw(Y--Z,p);   draw(Z--W,p); } W = A+smallSide*dir(120);  drawTrap(W,1, red+2);  pair W2,W3,W4,W5; W2 = A+3*dir(-90); W3 = W2+dir(90)*4*sqrt(3)/7; W4 = W3+dir(0)*6/7; W5 = W2+dir(0)*6/7; drawTrap(W2,2,blue+1); draw(W2--W3,blue+0.5); draw(W4--W5,blue+0.5); label("2/7",W3,NW); label("3/7",W3,NE); W4 = W3+6/7*dir(0); label("2/7",W4,NE); label("4/7",W2+dir(160)*0.5,W);  draw(A  -1.5*dir(45)-- F -1.5*dir(45), green+0.5); pair J,K,L,M,N; J = ((A/10+9*F/10))-0.25*dir(45); L = ((A+F)/2)-0.25*dir(45); K = ((J+L)/2)-0.25*dir(45); M = ((L+A)/2)-0.25*dir(45); N = ((A+F)/2)-1.6*dir(45);  label("3/7",J,SW); label("4/7",L,SW); label("1",K,SW); label("1",M,SW); label("3",N,SW);   [/asy]


Examining the red isosceles trapezoid with $1$ and $\dfrac{3}{7}$ as two bases, we know that the side lengths are $\dfrac{4}{7}$ from $30-60-90$ triangle.

We can conclude that the big hexagon has side length 3.

Thus the target area is: area of big hexagon - 6 * area of small hexagon. $\dfrac{3\sqrt{3}}{2}(3^2-6\cdot1^2) = \dfrac{3\sqrt{3}}{2}(3) = \boxed{\textbf{(C)}~\frac{9 \sqrt{3}}{2}}$

~Technodoggo

Solution 2 (Not rigorous)

Note that one can "slide' the small hexagons along their respective edges, and either by sliding them to the center or to the corners, and thus getting that the side length of the larger hexagon is 3. The rest proceeds the same as solution 1.

Solution 2.1 (Clarification)

Notice that when sliding the smaller hexagon along the edge, we see that the contact edge withe the smaller hexagon "in front" of it is $60^{\circ}$, thus meaning the hexagon "in front" is pushed at a speed $\sin{60^{\circ}}$ times the actual speed of the hexagon. We can preform a similar analysis on the hexagon that is being pushed and get that the speed at which that hexagon is moving is $\frac{1}{\sin{60^{\circ}}}$ times the speed it pushed by. As we can see, the two factors cancel out and by the same argument, every small hexagon can move at the same speed while mantaining an edge of contact with the two adjacent hexagons

Note

The number $\frac{3}{7}$ is irrelevant to solve the problem.

Video Solution 1 by OmegaLearn

https://youtu.be/pObolGKEKc0


See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png