2008 USAMO Problems/Problem 2
Problem
(Zuming Feng) Let be an acute, scalene triangle, and let
,
, and
be the midpoints of
,
, and
, respectively. Let the perpendicular bisectors of
and
intersect ray
in points
and
respectively, and let lines
and
intersect in point
, inside of triangle
. Prove that points
,
,
, and
all lie on one circle.
Contents
[hide]Solution
Solution 1 (synthetic)
![[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(1,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(B--D(MP("D",D,NE,s))--MP("P",P,(-1,0),s)--D(MP("O",O,(0,1),s))); D(D(MP("E",E,SW,s))--MP("N",N,(1,0),s)); D(C--D(MP("F",F,NW,s))); D(B--O--C,linetype("4 4")+linewidth(0.7)); D(M--N,linetype("4 4")+linewidth(0.7)); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); D(anglemark(B,A,C)); MP("y",A,(0,-6));MP("z",A,(4,-6)); D(anglemark(B,F,C,4),linewidth(0.6));D(anglemark(B,O,C,4),linewidth(0.6)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); /* D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); */ [/asy]](http://latex.artofproblemsolving.com/5/9/c/59c1afd86c69597587b940e9645c56d85342ba62.png)
Without loss of generality . The intersection of
and
is
, the circumcenter of
.
Let and
. Note
lies on the perpendicular bisector of
, so
. So
. Similarly,
, so
. Notice that
intercepts the minor arc
in the circumcircle of
, which is double
. Hence
, so
is cyclic.
Lemma 1: is directly similar to
since
,
,
are collinear,
is cyclic, and
. Also
because
, and
is the medial triangle of
so
. Hence
.
Notice that since
.
. Then
Hence
.
Hence is similar to
by AA similarity. It is easy to see that they are oriented such that they are directly similar. End Lemma 1.
![[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(1,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(B--D(MP("D",D,NE,s))--MP("P",P,(-1,0),s)--D(MP("O",O,(1,0),s))); D(D(MP("E",E,SW,s))--MP("N",N,(1,0),s)); D(C--D(MP("F",F,NW,s))); D(B--O--C,linetype("4 4")+linewidth(0.7)); D(F--N); D(O--M); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); /* commented from above asy D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); D(anglemark(B,A,C)); MP("y",A,(0,-6));MP("z",A,(4,-6)); D(anglemark(B,F,C,4),linewidth(0.6));D(anglemark(B,O,C,4),linewidth(0.6)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); */ [/asy]](http://latex.artofproblemsolving.com/9/2/c/92cb9683263caf4e6841a1554bf52c74dca6b4d1.png)
By the similarity in Lemma 1, .
so
by SAS similarity. Hence
Using essentially the same angle chasing, we can show that
is directly similar to
. It follows that
is directly similar to
. So
Hence
, so
is cyclic. In other words,
lies on the circumcircle of
. Note that
, so
is cyclic. In other words,
lies on the circumcircle of
.
,
,
,
, and
all lie on the circumcircle of
. Hence
,
,
, and
lie on a circle, as desired.
Solution 2 (synthetic)
Hint: consider intersection with
; show that the resulting intersection lies on the desired circle. Template:Incomplete
Solution 3 (trigonometric)
By the Law of Sines, . Since
and similarly
, we cancel to get
. Obviously,
so
.
Then and
. Subtracting these two equations,
so
. Therefore,
(by AA similarity), so a spiral similarity centered at
takes
to
and
to
. Therefore, it takes the midpoint of
to the midpoint of
, or
to
. So
and
is cyclic.
Solution 4 (isogonal conjugates)
![[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(4,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(C--D(MP("E",E,NW,s))--MP("N",N,(1,0),s)--D(MP("O",O,SW,s))); D(D(MP("D",D,SE,s))--MP("P",P,W,s)); D(B--D(MP("F",F,s))); D(O--A--F,linetype("4 4")+linewidth(0.7)); D(MP("O'",circumcenter(A,P,N),NW,s)); D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); draw(p,circumcircle(A,B,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); [/asy]](http://latex.artofproblemsolving.com/e/f/4/ef48251bf50ebbfa10db0114d80f3a0f7efe3276.png)
Construct on
such that
. Then
. Then
, so
, or
. Then
, so
. Then we have
and
. So
and
are isogonally conjugate. Thus
. Then
.
If is the circumcenter of
then
so
is cyclic. Then
.
Then . Then
is a right triangle.
Now by the homothety centered at with ratio
,
is taken to
and
is taken to
. Thus
is taken to the circumcenter of
and is the midpoint of
, which is also the circumcenter of
, so
all lie on a circle.
Solution 5 (symmedians)
Median of a triangle
implies
.
Trig ceva for
shows that
is a symmedian.
Then
is a median, use the lemma again to show that
, and similarly
, so you're done. Template:Incomplete
Solution 6 (inversion)
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
![[asy] size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(4,4); /* A.x > C.x/2 */ real r = 1.2; /* inversion radius */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(C--D(MP("E",E,NW,s))--MP("N",N,(1,0),s)--D(MP("O",O,SW,s))); D(D(MP("D",D,SE,s))--MP("P",P,W,s)); D(B--D(MP("F",F,s))); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); D(CR(A,r)); pair Pa = A + (P-A)/(r*r); D(MP("P'",Pa,NW,s)); [/asy]](http://latex.artofproblemsolving.com/d/c/0/dc0a7c4a28ed6b542c57a0f4e8641860c217f3f7.png)
We consider an inversion by an arbitrary radius about . We want to show that
and
are collinear. Notice that
and
lie on a circle with center
, and similarly for the other side. We also have that
form a cyclic quadrilateral, and similarly for the other side. By angle chasing, we can prove that
is a parallelogram, indicating that
is the midpoint of
. Template:Incomplete
Solution 7 (analytical)
We let be at the origin,
be at the point
, and
be at the point
. Then the equation of the perpendicular bisector of
is
, and Template:Incomplete
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
2008 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
- <url>viewtopic.php?t=202907 Discussion on AoPS/MathLinks</url>