2000 USAMO Problems

Revision as of 14:53, 30 March 2009 by FantasyLover (talk | contribs) (Problem 4)

Problems of the 2000 USAMO.

Day 1

Problem 1

Call a real-valued function $f$ very convex if

\[\frac {f(x) + f(y)}{2} \ge f\left(\frac {x + y}{2}\right) + |x - y|\]

holds for all real numbers $x$ and $y$. Prove that no very convex function exists.

Problem 2

Let $S$ be the set of all triangles $ABC$ for which

\[5 \left( \dfrac{1}{AP} + \dfrac{1}{BQ} + \dfrac{1}{CR} \right) - \dfrac{3}{\min\{ AP, BQ, CR \}} = \dfrac{6}{r},\]

where $r$ is the inradius and $P, Q, R$ are the points of tangency of the incircle with sides $AB, BC, CA,$ respectively. Prove that all triangles in $S$ are isosceles and similar to one another.

Problem 3

A game of solitaire is played with $R$ red cards, $W$ white cards, and $B$ blue cards. A player plays all the cards one at a time. With each play he accumulates a penalty. If he plays a blue card, then he is charged a penalty which is the number of white cards still in his hand. If he plays a white card, then he is charged a penalty which is twice the number of red cards still in his hand. If he plays a red card, then he is charged a penalty which is three times the number of blue cards still in his hand. Find, as a function of $R, W,$ and $B,$ the minimal total penalty a player can amass and all the ways in which this minimum can be achieved.

Day 2

Problem 4

Find the smallest positive integer $n$ such that if $n$ squares of a $1000\times 1000$ chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board.

Problem 5

Problem 6

Resources