2009 AIME I Problems/Problem 12
Problem
In right with hypotenuse , , , and is the altitude to . Let be the circle having as a diameter. Let be a point outside such that and are both tangent to circle . The ratio of the perimeter of to the length can be expressed in the form , where and are relatively prime positive integers. Find .
Solution
Let be center of the circle and , be the two points of tangent such that is on and is on . We know that .
Since the ratios between corresponding lengths of two similar diagrams are equal, we can let and . Hence and the radius .
Since we have and , we have . Hence . let , then we have Area = = . Then we get .
Now the equation looks very complex but we can take a guess here. Assume that is a rational number (If it's not then the answer to the problem would be irrational which can't be in the form of m/n) that can be expressed as a/b such that (a,b) = 1, look at both side, we can know that a has to be multiple of 1369 and not of 3. And it's reasonable to think that b is divisible by 3 so that we can cancel out the 3 on the right side of the equation.
Let's try if x = 1369/3 fits. Since 1369/3 + 1369 = 4*1369/3, and 3*1369*(x + 144)(x + 1225)/(1801*1261) = 3*1369*(1801/3)*(1261*4/3)/1801*1261 = 4*1369/3. Amazingly it fits!
Since we know that 3*1369*144*1225 - 1369*1801*1261 < 0, the other solution of this equation is negative which can be ignored. Hence x = 1369/3.
Hence the perimeter is 1225*2 + 144*2 + (1369/3)*2 = 1369*(8/3), and BC is 1369. Hence m/n = 8/3, m + n = 11.
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |