2008 AMC 10B Problems/Problem 6

Revision as of 19:50, 1 November 2009 by JBL (talk | contribs)

Problem

Points $B$ and $C$ lie on $\overline{AD}$. The length of $\overline{AB}$ is $4$ times the length of $\overline{BD}$, and the length of $\overline{AC}$ is $9$ times the length of $\overline{CD}$. The length of $\overline{BC}$ is what fraction of the length of $\overline{AD}$?

$\textbf{(A)}\ \frac{1}{36}\qquad\textbf{(B)}\ \frac{1}{13}\qquad\textbf{(C)}\ \frac{1}{10}\qquad\textbf{(D)}\ \frac{5}{36}\qquad\textbf{(E)}\ \frac{1}{5}$

Solution

Let $CD = 1$. Then $AB = 4(BC + 1)$ and $AB + BC = 9\cdot1$. From this system of equations we obtain $BC = 1$. Adding $CD$ to both sides of the second equation, we obtain $AD = AB + BC + CD = 9 + 1 = 10$. Thus, $\frac{BC}{AD} = \frac{1}{10} \implies\text{(C)}$

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions