2010 AMC 12B Problems/Problem 15

Revision as of 12:56, 31 May 2011 by Btilm305 (talk | contribs) (See also: fixed box numbers)

Problem 15

For how many ordered triples $(x,y,z)$ of nonnegative integers less than $20$ are there exactly two distinct elements in the set $\{i^x, (1+i)^y, z\}$, where $i=\sqrt{-1}$?

$\textbf{(A)}\ 149 \qquad \textbf{(B)}\ 205 \qquad \textbf{(C)}\ 215 \qquad \textbf{(D)}\ 225 \qquad \textbf{(E)}\ 235$

Solution

We have either $i^{x}=(1+i)^{y}\neq z$, $i^{x}=z\neq(1+i)^{y}$, or $(1+i)^{y}=z\neq i^x$.

For $i^{x}=(1+i)^{y}$, this only occurs at $1$. $(1+i)^{y}=1$ has only one solution, $i^{x}=1$ has five solutions between zero and nineteen, and $z\neq 1$ has nineteen integer solutions between zero and nineteen. So for $i^{x}=(1+i)^{y}\neq z$, we have $5\times 1\times 19=95$ ordered triples.

For $i^{x}=z\neq(1+i)^{y}$, again this only occurs at $1$. $(1+i)^{y}\neq 1$ has nineteen solutions, $i^{x}=1$ has five solutions, and $z=1$ has one solution, so again we have $5\times 1\times 19=95$ ordered triples.

For $(1+i)^{y}=z\neq i^x$, this occurs at $1$ and $16$. $(1+i)^{y}=1$ and $z=1$ both have one solution while $i^{x}\neq 1$ has fifteen solutions. $(1+i)^{y}=16$ and $z=16$ both have one solution while $i^{x}\neq 16$ has twenty solutions. So we have $15\times 1\times 1+20\times 1\times 1=35$ ordered triples.

In total we have ${95+95+35=225}$ ordered triples $\Rightarrow \boxed{D}$

See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions