1958 AHSME Problems/Problem 2

Problem

If $\frac {1}{x} - \frac {1}{y} = \frac {1}{z}$, then $z$ equals:

$\textbf{(A)}\ y - x\qquad \textbf{(B)}\ x - y\qquad \textbf{(C)}\ \frac {y - x}{xy}\qquad \textbf{(D)}\ \frac {xy}{y - x}\qquad \textbf{(E)}\ \frac {xy}{x - y}$

Solution

$\frac{1}{x}-\frac{1}{y}=\frac{1}{z}$

$\frac{y}{xy}-\frac{x}{xy}=\frac{1}{z}$

$\frac{y-x}{xy}=\frac{1}{z}$

$\frac{1}{\frac{y-x}{xy}}=\frac{1}{\frac{1}{z}}$

$\frac{xy}{y-x}=z$

The answer is therefore $\boxed{\text{D}}$.

See also

1958 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png