1958 AHSME Problems/Problem 10

Problem

For what real values of $k$, other than $k = 0$, does the equation $x^2 + kx + k^2 = 0$ have real roots?

$\textbf{(A)}\ {k < 0}\qquad  \textbf{(B)}\ {k > 0} \qquad  \textbf{(C)}\ {k \ge 1} \qquad  \textbf{(D)}\ \text{all values of }{k}\qquad  \textbf{(E)}\ \text{no values of }{k}$

Solution

An expression of the form $ax^2+bx+c$ has at least one real root when $b^2-4ac \geq 0$.

Substituting $k$ for $b$ and $k^2$ for $c$, we have

\[k^2-4k^2 \geq 0\]

\[-3k^2 \geq 0\]

but the range of $-3k^2$ is $(-\infty,0]$, so the answer is $\boxed{\text{(E)}}$

See also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png