2005 AMC 12B Problems/Problem 23

Revision as of 18:31, 30 August 2013 by Armalite46 (talk | contribs) (Solution)

Problem

Let $S$ be the set of ordered triples $(x,y,z)$ of real numbers for which

\[\log_{10}(x+y) = z \text{ and } \log_{10}(x^{2}+y^{2}) = z+1.\] There are real numbers $a$ and $b$ such that for all ordered triples $(x,y.z)$ in $S$ we have $x^{3}+y^{3}=a \cdot 10^{3z} + b \cdot 10^{2z}.$ What is the value of $a+b?$

$\textbf{(A)}\ \frac {15}{2} \qquad  \textbf{(B)}\ \frac {29}{2} \qquad  \textbf{(C)}\ 15 \qquad  \textbf{(D)}\ \frac {39}{2} \qquad  \textbf{(E)}\ 24$

Solution

Let $x + y = s$ and $x^2 + y^2 = t$. Then, $\log(s)=z$ implies $\log(10s) = z+1= \log(t)$,so $t=10s$. Therefore, $x^3 + y^3 = s*\frac{3t-s^2}{2} = s(15s-\frac{s^2}{2})$. Since $s = 10^z$, we find that $x^3 + y^3 = 15\times10^2 - (1/2)\times10^3$. Thus, $a+b = \boxed{\frac{29}{2}}$.

Alternate Solution

First, remember that $x^3 + y^3$ factors to $(x + y) (x^2 - xy + y^2)$. By the givens, $x + y = 10^z$ and $x^2 + y^2 = 10^{z + 1}$. These can be used to find $xy$: \[(x + y)^2 = 10^{2z}\] \[x^2 + 2xy + y^2 = 10^{2z}\] \[2xy = 10^{2z} - 10^{z + 1}\] \[xy = \frac{10^{2z} - 10^{z + 1}}{2}\]

Therefore, \[x^3 + y^3 = a \cdot 10^{3z} + b \cdot 10^{2z} = 10^z\left(10^{z + 1} - \frac{10^{2z} - 10^{z + 1}}{2}\right)\] \[= 10^z\left(10^{z + 1} - \frac{10^{2z} - 10^{z + 1}}{2}\right)\] \[= 10^{2z + 1} - \frac{10^{3z} - 10^{2z + 1}}{2}\] \[= -\frac{1}{2} \cdot 10^{3z} + \frac{3}{2} \cdot 10^{2z}\] \[= -\frac{1}{2} \cdot 10^{3z} + 15 \cdot 10^{2z}.\]

It follows that $a = -\frac{1}{2}$ and $b = 15$, thus $a + b = \frac{29}{2}.$

See Also

2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png