2005 CEMC Gauss (Grade 7) Problems

Revision as of 01:00, 23 October 2014 by RTG (talk | contribs)

Part A: Each correct answer is worth 5 points

Problem 1

The value of $\frac{3 \times 4}{6}$ is

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 6$

Solution

Problem 2

The value of $0.8 - 0.07$ is

$\text{(A)}\ 0.1 \qquad \text{(B)}\ 0.71 \qquad \text{(C)}\ 0.793 \qquad \text{(D)}\ 0.01 \qquad \text{(E)}\ 0.73$

Solution

Problem 3

[asy] //make the picture small and square size(80,80);  //draw an arc from 0 to 75 degrees of radius 1 centered at the origin draw(arc((0,0),1,0,75));  //draw a line with an arrow on the end pointing to 25 degrees (scale it down by .95 so that it stays inside the arc) //dir(25) is a unit vector pointing 25 degrees draw((0,0)--scale(.95)*dir(25),Arrow);  //put a label at the end of the 75 degree unit vector (and position it out 75 degrees) MarkPoint("9",dir(75),dir(75));  //put a label at the end of the 75 degree unit vector (rotate label 75 degrees to create a tick) MarkPoint(75,"-",scale(.85)*dir(75),dir(75)); MarkPoint("9.2",dir(60),dir(60)); MarkPoint(60,"-",scale(.85)*dir(60),dir(60)); MarkPoint("9.4",dir(45),dir(45));  //put a label at the end of the 45 degree unit vector - use NE to move it slightly NorthEast of this point (or use dir(45)) MarkPoint(45,"-",scale(.85)*dir(45),NE); MarkPoint("9.6",dir(30),dir(30)); MarkPoint(30,"-",scale(.85)*dir(30),dir(30)); MarkPoint("9.8",dir(15),dir(15)); MarkPoint(15,"-",scale(.85)*dir(15),dir(15));  //put a label at the end of the 0 degree unit vector - use E to move it slightly East of this point (or use dir(0)) MarkPoint("10",dir(0),E); MarkPoint(0,"-",scale(.85)*dir(0),dir(0)); [/asy]


Contestants on "Gauss Reality TV" are rated by an applause metre. In the diagram, the arrow for one of the contestants is pointing to a rating closest to:

$\text{(A)}\ 9.4 \qquad \text{(B)}\ 9.3 \qquad \text{(C)}\ 9.7 \qquad \text{(D)}\ 9.9 \qquad \text{(E)}\ 9.5$

Solution

Problem 4

Twelve million added to twelve thousand equals

$\text{(A)}\ 12,012,000 \qquad \text{(B)}\ 12,120,000 \qquad \text{(C)}\ 120,120,000 \qquad \text{(D)}\ 12,000,012,000 \qquad \text{(E)}\ 12,012,000,000$

Solution

Problem 5

The largest number in the set {$0.109, 0.2, 0.111, 0.114, 0.19$} is

$\text{(A)}\ 0.109 \qquad \text{(B)}\ 0.2 \qquad \text{(C)}\ 0.111 \qquad \text{(D)}\ 0.114 \qquad \text{(E)}\ 0.19$

Solution

Problem 6

At a class party, each student randomly selects a wrapped prize from a bag. The prizes include books and calculators. There are $27$ prizes in the bag. Meghan is the first to choose a prize. If the probability of Meghan choosing a book for her prize is $2/3$, how many books are in the bag?

$\text{(A)}\ 15 \qquad \text{(B)}\ 9 \qquad \text{(C)}\ 21 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 18$

Solution

Problem 7

Karen has just been chosen the new “Math Idol”. A total of $1,480,000$ votes were cast and Karen received $83\%$ of them. How many people voted for her?

$\text{(A)}\ 830,000 \qquad \text{(B)}\ 1,228,400 \qquad \text{(C)}\ 1,100,000 \qquad \text{(D)}\ 251,600 \qquad \text{(E)}\ 1,783,132$

Solution

Problem 8

In the diagram, what is the measure of $\angle ACB$ in degrees? [asy] size(300); draw((-60,0)--(0,0)); draw((0,0)--(64.3,76.6)--(166,0)--cycle); label("$A$",(64.3,76.6),N); label("$93^\circ$",(64.3,73),S); label("$130^\circ$",(0,0),NW); label("$B$",(0,0),S); label("$D$",(-60,0),S); label("$C$",(166,0),S); [/asy]

$\text{(A)}\ 57^\circ \qquad \text{(B)}\ 37^\circ \qquad \text{(C)}\ 47^\circ \qquad \text{(D)}\ 60^\circ \qquad \text{(E)}\ 17^\circ$

Solution

Problem 9

A movie theatre has eleven rows of seats. The rows are numbered from $1$ to $11$. Odd-numbered rows have $15$ seats and even-numbered rows have $16$ seats. How many seats are there in the theatre?

$\text{(A)}\ 176 \qquad \text{(B)}\ 186 \qquad \text{(C)}\ 165 \qquad \text{(D)}\ 170 \qquad \text{(E)}\ 171$

Solution

Problem 10

In relation to Smiths Falls, Ontario, the local time in St. John’s, Newfoundland, is $90$ minutes ahead, and the local time in Whitehorse, Yukon, is $3$ hours behind. When the local time in St. John’s is 5:36 p.m., the local time in Whitehorse is

$\text{(A)}$ 1:06 p.m. $\text{(B)}$ 2:36 p.m. $\text{(C)}$ 4:06 p.m. $\text{(D)}$ 12:06 p.m. $\text{(E)}$ 10:06 p.m.

Solution

Part B: Each correct answer is worth 6 points

Problem 11

The temperature range on a given day is the difference between the daily high and the daily low temperatures. On the graph shown, which day has the greatest temperature range?

$\text{(A)}\ \text{Monday} \qquad \text{(B)}\ \text{Tuesday} \qquad \text{(C)}\ \text{Wednesday} \qquad \text{(D)}\ \text{Thursday} \qquad \text{(E)}\ \text{Friday}$

[asy] size(300); draw((0,-10)--(0,10),EndArrow); // Comments this line out for reading purposes //draw((0,0)--(16,0),EndArrow); draw((0,0)--(16,0),arrow=Arrow(TeXHead));//smaller arrowhead picture temp; label(temp,"Temperature ($^\circ$C)"); add(rotate(90)*temp,(-2,0)); picture mon; label(mon,"Mon."); add(rotate(90)*mon,(2,7.3)); picture tues; label(tues,"Tues."); add(rotate(90)*tues,(4,4.3)); picture Wed; label(Wed,"Wed."); add(rotate(90)*Wed,(6,5.3)); picture Thurs; label(Thurs,"Thurs."); add(rotate(90)*Thurs,(8,5.4));  //picture Fri; //label(Fri,"Fri."); //add(rotate(90)*Fri,(10,9)); MP(90,"\textup{ Fri.}",(10,8),N);//MarkPoint(Rotation,Label,Coordinates) textup(upright no-italics) draw((-0.3,-8)--(0.3,-8)); draw((-0.3,-6)--(0.3,-6)); draw((-0.3,-4)--(0.3,-4)); draw((-0.3,-2)--(0.3,-2)); draw((-0.3,2)--(0.3,2)); draw((-0.3,4)--(0.3,4)); //draw((-0.3,6)--(0.3,6)); //draw((-0.3,8)--(0.3,8)); path Tick=((-.3,0)--(.3,0));draw(shift(0,6)*Tick);draw(shift(0,8)*Tick); dot((2,6)); dot((4,3)); dot((6,4)); dot((8,4)); dot((10,8)); draw((1.8,-3.8)--(2.2,-3.8)--(2.2,-4.2)--(1.8,-4.2)--cycle); draw((3.8,-5.8)--(4.2,-5.8)--(4.2,-6.2)--(3.8,-6.2)--cycle); draw((5.8,-1.8)--(6.2,-1.8)--(6.2,-2.2)--(5.8,-2.2)--cycle); draw((7.8,-4.8)--(8.2,-4.8)--(8.2,-5.2)--(7.8,-5.2)--cycle); //draw((9.8,0.2)--(10.2,0.2)--(10.2,-0.2)--(9.8,-0.2)--cycle); path Square=((-.2,-.2)--(-.2,.2)--(.2,.2)--(.2,-.2)--cycle); filldraw(shift(10,0)*Square,white);// this hides the x-axis behind white filling -- try green label("-8",(-0.3,-8),W); label("-6",(-0.3,-6),W); label("-4",(-0.3,-4),W); label("-2",(-0.3,-2),W); label("0",(-0.3,0),W); label("2",(-0.3,2),W); label("4",(-0.3,4),W); label("6",(-0.3,6),W); label("8",(-0.3,8),W); dot((12,-6.5)); label("Daily High",(12,-6.5),E); draw((11.8,-7.7)--(11.8,-7.3)--(12.2,-7.3)--(12.2,-7.7)--cycle); label("Daily Low",(12,-7.5),E); [/asy]

Solution

Problem 12

A bamboo plant grows at a rate of $105$ cm per day. On May 1st at noon it was $2 m$ tall. Approximately how tall, in metres, was it on May 8th at noon?

$\text{(A)}\ 10.40 \qquad \text{(B)}\ 8.30 \qquad \text{(C)}\ 3.05 \qquad \text{(D)}\ 7.35 \qquad \text{(E)}\ 9.35$

Solution

Problem 13

In the diagram, the length of $DC$ is twice the length of $BD$. What is the area of the triangle $ABC$?

$\text{(A)}\ 24 \qquad \text{(B)}\ 72 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 18 \qquad \text{(E)}\ 36$

[asy] draw((0,0)--(-3,0)--(0,4)--cycle); draw((0,0)--(6,0)--(0,4)--cycle); label("3",(-1.5,0),N); label("4",(0,2),E); label("$A$",(0,4),N); label("$B$",(-3,0),S); label("$C$",(6,0),S); label("$D$",(0,0),S); draw((0,0.4)--(0.4,0.4)--(0.4,0)); [/asy]

Solution

Problem 14

The numbers on opposite sides of a die total $7$. What is the sum of the numbers on the unseen faces of the two dice shown?

$\text{(A)}\ 14 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 21 \qquad \text{(D)}\ 24 \qquad \text{(E)}\ 30$

[asy] import three; unitsize(1cm); size(100); currentprojection=orthographic(1/2,-1,1/2); // three - currentprojection, orthographic draw((0,0,0)--(0,0,1)); draw((1,1,0)--(1,1,1)); draw((0,0,0)--(1,0,0)); draw((1,1,0)--(1,0,0)); draw((1,0,0)--(1,0,1)); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle); dot((0,.5,0)); dot((0,1,0)); dot((0,1.5,0)); dot((-.5,1.5,0)); dot((0,1.5,-.5)); dot((1,.2,.3)); dot((1,.2,.7)); dot((1,.8,.3)); dot((1,.8,.7)); dot((.1,1.3,.6)); draw((-1,0,1)--(-1,0,0)--(-2,0,0)--(-2,0,1)); draw((-1,0,0)--(-1,1,0)); draw((-1,1,1)--(-1,1,0)); draw((-1,0,1)--(-2,0,1)--(-2,1,1)--(-1,1,1)--cycle); dot((-1.8,0,0.2)); dot((-1.5,0,0.2)); dot((-1.2,0,0.2)); dot((-1.8,0,0.8)); dot((-1.5,0,0.8)); dot((-1.2,0,0.8)); dot((-1,0.2,0.2)); dot((-1,0.8,0.8)); dot((-1.2,0.2,1)); dot((-1.5,0.5,1)); dot((-1.8,0.8,1)); [/asy]

Solution

Problem 15

In the diagram, the area of rectangle $PQRS$ is $24$. If $TQ = TR$, what is the area of quadrilateral $PTRS$?

$\text{(A)}\ 18 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 16 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 15$

[asy] size(100); draw((0,0)--(6,0)--(6,4)--(0,4)--cycle); draw((0,4)--(6,2)); draw((5.8,1.1)--(6.2,1.1)); draw((5.8,.9)--(6.2,.9)); draw((5.8,3.1)--(6.2,3.1)); draw((5.8,2.9)--(6.2,2.9)); label("$P$",(0,4),NW); label("$S$",(0,0),SW); label("$R$",(6,0),SE); label("$T$",(6,2),E); label("$Q$",(6,4),NE); [/asy]

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Part C: Each correct answer is worth 8 points

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also