2016 AMC 10A Problems/Problem 9

Revision as of 20:15, 9 February 2016 by Abvenkgoo (talk | contribs) (Solution)

Problem

A triangular array of $2016$ coins has $1$ coin in the first row, $2$ coins in the second row, $3$ coins in the third row, and so on up to $N$ coins in the $N$th row. What is the sum of the digits of $N$?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

We are trying to find the value of $N$ such that \[1+2+3\cdots+N-1+N=\frac{N(N+1)}{2}=2016.\] Noticing that $\frac{63\cdot 64}{2}=2016,$ we have $N=63,$ so our answer is $\boxed{\textbf{(D) } 9}.$

Furthermore, we are attempting to solve $\frac{N(N+1)}{2} = 2016 \Rightarrow N(N+1) = 2016\cdot2 = 4032$. Approximating $N(N+1) \approx N^2$, we are looking for a square that is close, but less than $4032$. Noting that $64^2 = 4096$, we see that $N = 63$ must be that answer.

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png