2011 AMC 10B Problems/Problem 24
Contents
Problem
A lattice point in an -coordinate system is any point where both and are integers. The graph of passes through no lattice point with for all such that . What is the maximum possible value of ?
Solution 1
We see that for the graph of to not pass through any lattice points, the denominator of must be greater than , or else it would be canceled by some which would make an integer. By using common denominators, we find that the order of the fractions from smallest to largest is . We can see that when , would be an integer, so therefore any fraction greater than would not work, as substituting our fraction for would produce an integer for . So now we are left with only and . But since and , we can be absolutely certain that there isn't a number between and that can reduce to a fraction whose denominator is less than or equal to . Since we are looking for the maximum value of , we take the larger of and , which is .
Solution 2
We want to find the smallest such that there will be an integral solution to with . We first test A, but since the denominator has a , must be a nonzero multiple of , but it then will be greater than . We then test B. yields the solution which satisfies . We know that MAA orders the answers in ascending order, so therefore we know that the smallest possible must be
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.