2014 AMC 10A Problems/Problem 22

Revision as of 00:12, 13 January 2018 by Pulusona (talk | contribs) (Solution 4 (Measuring))

Problem

In rectangle $ABCD$, $\overline{AB}=20$ and $\overline{BC}=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $\overline{AE}$?

$\textbf{(A)}\ \dfrac{20\sqrt3}3\qquad\textbf{(B)}\ 10\sqrt3\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 11\sqrt3\qquad\textbf{(E)}\ 20$

Solution (Trigonometry)

Note that $\tan 15^\circ=\frac{EC}{10} \Rightarrow EC=20-10 \sqrt 3$. (If you do not know the tangent half-angle formula, it is $\tan \frac{\theta}2= \frac{1-\cos \theta}{\sin \theta}$). Therefore, we have $DE=10\sqrt 3$. Since $ADE$ is a $30-60-90$ triangle, $AE=2 \cdot AD=2 \cdot 10=\boxed{\textbf{(E)} \: 20}$

Solution 2 (Without Trigonometry)

Let $F$ be a point on line $\overline{CD}$ such that points $C$ and $F$ are distinct and that $\angle EBF = 15^\circ$. By the angle bisector theorem, $\frac{\overline{BC}}{\overline{BF}} = \frac{\overline{CE}}{\overline{EF}}$. Since $\triangle BFC$ is a $30-60-90$ right triangle, $\overline{CF} = \frac{10\sqrt{3}}{3}$ and $\overline{BF} = \frac{20\sqrt{3}}{3}$. Additionally, \[\overline{CE} + \overline{EF} = \overline{CF} = \frac{10\sqrt{3}}{3}\]Now, substituting in the obtained values, we get $\frac{10}{\frac{20\sqrt{3}}{3}} = \frac{\overline{CE}}{\overline{EF}} \Rightarrow \frac{2\sqrt{3}}{3}\overline{CE} = \overline{EF}$ and $\overline{CE} + \overline{EF} = \frac{10\sqrt{3}}{3}$. Substituting the first equation into the second yields $\frac{2\sqrt{3}}{3}\overline{CE} + \overline{CE} = \frac{10\sqrt{3}}{3} \Rightarrow \overline{CE} = 20 - 10\sqrt{3}$, so $\overline{DE} = 10\sqrt{3}$. Because $\triangle ADE$ is a $30-60-90$ triangle, $\overline{AE} = \boxed{\textbf{(E)}~20}$.

Solution 3 (Trigonometry)

By Law of Sines\[\frac{BC}{\sin 75^\circ}=\frac{EC}{\sin15^\circ}\rightarrow\frac{10}{\frac{\sqrt{2}+\sqrt{6}}{4}}=\frac{EC}{\frac{\sqrt{6}-\sqrt{2}}{4}}\rightarrow\frac{10}{EC}=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}\rightarrow EC=\frac{10}{2+\sqrt{3}}=20-10\sqrt{3}.\]Thus, $DE=20-(20-10\sqrt{3})=10\sqrt{3}.$

We see that $\triangle{ADE}$ is a $30-60-90$ triangle, leaving $\overline{AE}=\boxed{\textbf{(E)}~20}.$

Solution 4 (Measuring)

If we draw rectangle $ABCD$ and whip out a protractor, we can draw a perfect $\overline{BE}$, almost perfectly $15^\circ$ degrees off of $\overline{BC}$. Then we can draw $\overline{AE}$, and use a ruler to measure it. We can clearly see that the $\overline{AE}$ is $\boxed{\textbf{(E)}~20}$.

NOTE: this method is a last resort, and is pretty risky. Answer choice $\textbf{(D)}~11\sqrt{3}$ is also very close to $\textbf{(E)}~20$, meaning that we wouldn't be 100% sure of our answer. However, If we measure the angles of $\triangle ADE$, we can clearly see that it is a $30-60-90$ triangle, which verifies our answer of $\boxed{20}$.

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png