2005 AMC 12B Problems/Problem 24
Problem
All three vertices of an equilateral triangle are on the parabola , and one of its sides has a slope of . The -coordinates of the three vertices have a sum of , where and are relatively prime positive integers. What is the value of ?
Solution 1 (Complex numbers)
Let the three points be at , , and , such that the slope between the first two is .
Then, we have . Similarly, the slope of is , and the slope of is . The desired sum is , which is equal to the sum of the slopes divided by .
To find the slope of , we note that it comes at a angle with . Thus, we can find the slope of by multiplying the two complex numbers and . What this does is generate the complex number that is at a angle with the complex number . Then, we can find the slope of the line between this new complex number and the origin:
Solution 2
Using the slope formula and differences of squares, we find:
= the slope of ,
= the slope of ,
= the slope of .
So the value that we need to find is the sum of the slopes of the three sides of the triangle divided by . Without loss of generality, let be the side that has the smallest angle with the positive -axis. Let be an arbitrary point with the coordinates . Translate the triangle so is at the origin. Then . Since the slope of a line is equal to the tangent of the angle formed by the line and the positive x- axis, the answer is .
Using , and the tangent addition formula, this simplifies to , so the answer is
See also
2005 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.