1959 AHSME Problems/Problem 34
Problem 34
Let the roots of be and . Then the expression is:
Solution
You may recognize that can be written as . Then, by Vieta's formulas, and Therefore, plugging in the values for and , Hence, we can say that the expression is .
See also
1959 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 33 |
Followed by Problem 35 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.