2009 AMC 12A Problems/Problem 22
Problem
A regular octahedron has side length . A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area , where , , and are positive integers, and are relatively prime, and is not divisible by the square of any prime. What is ?
Solution
Firstly, note that the intersection of the plane must be a hexagon. Consider the net of the octahedron. Notice that the hexagon becomes a line on the net. Also, notice that, given the parallel to the faces conditions, the line must be parallel to precisely of the sides of the net. Now, notice that, through symmetry, 2 of the hexagon's vertexes lie on the midpoint of the side of the "square" in the octahedron. In the net, the condition gives you that one of the intersections of the line with the net have to be on the midpoint of the side. However, if one is on the midpoint, because of the parallel conditions, all of the vertices are on the midpoint of a side. Thus, we have a regular hexagon with a side length of the midline of an equilateral triangle with side length 1, which is . Thus, the answer is, and .
See also
2009 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.