2020 AMC 10A Problems/Problem 12

Revision as of 22:16, 31 January 2020 by Icematrix (talk | contribs)

Problem

Triangle $AMC$ is isoceles with $AM = AC$. Medians $\overline{MV}$ and $\overline{CU}$ are perpendicular to each other, and $MV=CU=12$. What is the area of $\triangle AMC?$

$\textbf{(A) } 48 \qquad \textbf{(B) } 72 \qquad \textbf{(C) } 96 \qquad \textbf{(D) } 144 \qquad \textbf{(E) } 192$

Solution

Since quadrilateral $UVCM$ has perpendicular diagonals, its area can be found as half of the product of the length of the diagonals. Also note that $\triangle AUV$ has $\frac 14$ the area of triangle $AMC$ by similarity, so $[UVCM]=\frac 34\cdot [AMC].$ Thus, \[\frac 12 \cdot 12\cdot 12=\frac 34 \cdot [AMC]\] \[72=\frac 34\cdot [AMC]\] \[[AMC]=96\rightarrow \boxed{\textbf{(C)}}.\]


Solution 2 (CHEATING)

Draw a to-scale diagram with your graph paper and straightedge. Measure the height and approximate the area.

Video Solution

https://youtu.be/ZGwAasE32Y4

~IceMatrix

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png