2010 AMC 10A Problems/Problem 6

Revision as of 20:31, 1 November 2015 by Atmchallenge (talk | contribs)

Problem 6

For positive numbers $x$ and $y$ the operation $\spadesuit (x,y)$ is defined as

\[\spadesuit (x,y) = x-\dfrac{1}{y}\]

What is $\spadesuit (2,\spadesuit (2,2))$?

$\mathrm{(A)}\ \dfrac{2}{3} \qquad \mathrm{(B)}\ 1 \qquad \mathrm{(C)}\ \dfrac{4}{3} \qquad \mathrm{(D)}\ \dfrac{5}{3} \qquad \mathrm{(E)}\ 2$

Solution

$\spadesuit (2,2) =2-\frac{1}{2} =\frac{3}{2}$. Then, $\spadesuit (2,\frac{3}{2})$ is $2-\frac{1}{\frac{3}{2}} = 2- \frac{2}{3} = \frac{4}{3}$ The answer is $\boxed{C}$


See Also

2010 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png