2020 AIME II Problems/Problem 14

Revision as of 03:43, 8 June 2020 by Mn28407 (talk | contribs) (Video Solution)

Problem

For real number $x$ let $\lfloor x\rfloor$ be the greatest integer less than or equal to $x$, and define $\{x\} = x - \lfloor x \rfloor$ to be the fractional part of $x$. For example, $\{3\} = 0$ and $\{4.56\} = 0.56$. Define $f(x)=x\{x\}$, and let $N$ be the number of real-valued solutions to the equation $f(f(f(x)))=17$ for $0\leq x\leq 2020$. Find the remainder when $N$ is divided by $1000$.

Solution

Video Solution

https://youtu.be/bz5N-jI2e0U?t=515

See Also

2020 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png