1978 AHSME Problems/Problem 20

Revision as of 21:03, 4 September 2021 by MRENTHUSIASM (talk | contribs)

Problem 20

If $a,b,c$ are non-zero real numbers such that \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] and \[x=\frac{(a+b)(b+c)(c+a)}{abc},\] and $x<0,$ then $x$ equals

$\textbf{(A) }-1\qquad \textbf{(B) }-2\qquad \textbf{(C) }-4\qquad \textbf{(D) }-6\qquad  \textbf{(E) }-8$

Solution 2

We equate the first two expressions (More generally, we can equate any two expressions): \[\frac{a+b-c}{c}=\frac{a-b+c}{b}.\] We add $1$ to both sides, then rearrange: \begin{align*} \frac{a+b}{c} &= \frac{a+c}{b} \\ ab+b^2 &= ac+c^2 \\ \bigl(ab-ac\bigr)+\bigl(b^2-c^2\bigr) &= 0 \\ a(b-c)+(b+c)(b-c) &= 0 \\ (a+b+c)(b-c) &= 0, \end{align*} from which $a+b+c=0$ or $b=c.$

  • If $a+b+c=0,$ then $x=\frac{(-c)(-a)(-b)}{abc}=-1.$
  • If $b=c,$ then $x=\frac{(a+b)(b+c)(c+a)}{abc}$

~Pega969 (Solution)

~MRENTHUSIASM (Revision)

The second solution gives us $a=b=c$, and $x=\frac{8a^3}{a^3}=8$, which is not negative, so this solution doesn't work.

Therefore, $x=-1\Rightarrow\boxed{A}$.

EDITING IN PROGRESS

See also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png