1976 AHSME Problems/Problem 27

Revision as of 01:10, 8 September 2021 by MRENTHUSIASM (talk | contribs)

Problem

If \[N=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}},\] then $N$ equals

$\textbf{(A) }1\qquad \textbf{(B) }2\sqrt{2}-1\qquad \textbf{(C) }\frac{\sqrt{5}}{2}\qquad \textbf{(D) }\sqrt{\frac{5}{2}}\qquad \textbf{(E) }\text{none of these}$

Solution

Let $x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}$ and $y=\sqrt{3-2\sqrt{2}}.$ Note that \begin{align*} x^2&=\frac{\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)^2}{\left(\sqrt{\sqrt{5}+1}\right)^2} \\ &=\frac{\left(\sqrt{5}+2\right)+2\cdot\left(\sqrt{\sqrt{5}+2}\cdot\sqrt{\sqrt{5}-2}\right)+\left(\sqrt{5}-2\right)}{\sqrt{5}+1} \\ &=\frac{2\sqrt{5}+2}{\sqrt{5}+1} \\ &=2. \end{align*}

~Someonenumber011 (Solution)

~MRENTHUSIASM (Revision)

See also

1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png