2021 Fall AMC 12A Problems/Problem 17

Revision as of 18:59, 23 November 2021 by Ehuang0531 (talk | contribs) (Solution)

Problem

For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$

Solution

If a quadratic equation does not have two distinct real solutions, then its discriminant must be $\le0$. So, $b^2-4c\le0$ and $c^2-4b\le0$. By inspection, there are $\boxed{\textbf{(B) } 6}$ ordered pairs of positive integers that fulfill these criteria: $(1,1)$, $(1,2)$, $(2,1)$, $(2,2)$, $(3,3)$, and $(4,4)$.

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png