2021 Fall AMC 10A Problems/Problem 15

Revision as of 00:44, 24 November 2021 by Kingravi (talk | contribs) (Solution 2 (Similar Triangles))

Isosceles triangle $ABC$ has $AB = AC = 3\sqrt6$, and a circle with radius $5\sqrt2$ is tangent to line $AB$ at $B$ and to line $AC$ at $C$. What is the area of the circle that passes through vertices $A$, $B$, and $C?$

$\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi$

Solution 1

Let the center of the first circle be $O.$ By Pythagorean Theorem, \[AO=\sqrt{(3\sqrt{6})^2+(5\sqrt{2})^2}=2 \sqrt{26}\] Now, notice that since $\angle ABO$ is $90$ degrees, so arc $AO$ is $180$ degrees and $AO$ is the diameter. Thus, the radius is $\sqrt{26},$ so the area is $\boxed{26\pi}.$

- kante314

Solution 2 (Similar Triangles)


import olympiad;
unitsize(50);
pair A,B,C,D,E,I,F,G,O;
A=origin; B=(2,3); C=(-2,3); D=(4.3,6.3); E=(-4.3,6.3); F=(1,1.5); G=(-1,1.5);
O=circumcenter(A,B,C); // olympiad - circumcenter
I=incenter(A,D,E);
draw(A--B--C--cycle);
dot(O);
dot(I);
dot(F);
dot(G);
draw(circumcircle(A,B,C)); // olympiad - circumcircle
draw(incircle(A,D,E));
draw(I--B);
draw(I--C);
draw(I--A);
draw(rightanglemark(A,C,I)); 
draw(rightanglemark(A,B,I));
draw(O--F);
draw(O--G);
draw(rightanglemark(A,F,O)); 
draw(rightanglemark(A,G,O));


label("$O$",O,W);
label("$A$",A,S);
label("$B$",B,N);
label("$C$",C,W);
label("$D$",F,S);
label("$E$",G,W);

label("$3\sqrt{6}$",(1.5,1.5),S);
label("$3\sqrt{6}$",(-1.5,1.5),S);
label("$5\sqrt{2}$",(1,3.625),N);
label("$5\sqrt{2}$",(-1,3.625),N);
label("$I$",I,N);
label("$r$",(-0.25,1.5),E);
label("$r$",(0.5,2.125),S);
add(pathticks(A--F,1,0.5,0,2);
add(pathticks(F--B,1,0.5,0,2); 
add(pathticks(A--G,1,0.5,0,2);
add(pathticks(G--C,1,0.5,0,2);



 (Error making remote request. Unknown error_msg)


Because circle $I$ is tangent to $\overline{AB}$ at $B, \angle{ABI} = 90^{\circ}$. Because O is the circumcenter of $\bigtriangleup ABC, \overline{OD}$ is the perpendicular bisector of $\overline{AB}$.

Solution in Progress

~KingRavi

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png