2010 AMC 8 Problems/Problem 18

Revision as of 20:40, 2 January 2023 by Pi is 3.14 (talk | contribs)

Problem

A decorative window is made up of a rectangle with semicircles at either end. The ratio of $AD$ to $AB$ is $3:2$. And $AB$ is 30 inches. What is the ratio of the area of the rectangle to the combined area of the semicircles?

[asy] import graph; size(5cm); real lsf=0; pen dps=linewidth(0.7)+fontsize(8); defaultpen(dps); pen ds=black; real xmin=-4.27,xmax=14.73,ymin=-3.22,ymax=6.8; draw((0,4)--(0,0)); draw((0,0)--(2.5,0)); draw((2.5,0)--(2.5,4)); draw((2.5,4)--(0,4)); draw(shift((1.25,4))*xscale(1.25)*yscale(1.25)*arc((0,0),1,0,180)); draw(shift((1.25,0))*xscale(1.25)*yscale(1.25)*arc((0,0),1,-180,0)); dot((0,0),ds); label("$A$",(-0.26,-0.23),NE*lsf); dot((2.5,0),ds); label("$B$",(2.61,-0.26),NE*lsf); dot((0,4),ds); label("$D$",(-0.26,4.02),NE*lsf); dot((2.5,4),ds); label("$C$",(2.64,3.98),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]

$\textbf{(A)}\ 2:3\qquad\textbf{(B)}\ 3:2\qquad\textbf{(C)}\ 6:\pi\qquad\textbf{(D)}\ 9:\pi\qquad\textbf{(E)}\ 30 :\pi$

Solution

We can set a proportion:

\[\dfrac{AD}{AB}=\dfrac{3}{2}\]

We substitute $AB$ with 30 and solve for $AD$.

\[\dfrac{AD}{30}=\dfrac{3}{2}\]

\[AD=45\]

We calculate the combined area of semicircle by putting together semicircle $AB$ and $CD$ to get a circle with radius $15$. Thus, the area is $225\pi$. The area of the rectangle is $30\cdot 45=1350$. We calculate the ratio:

\[\dfrac{1350}{225\pi}=\dfrac{6}{\pi}\Rightarrow\boxed{\textbf{(C)}\ 6:\pi}\]

Note that we could have solved this without the measurement of $30$ inches.

Video Solution by OmegaLearn

https://youtu.be/j3QSD5eDpzU?t=657

~ pi_is_3.14


See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png