2010 AMC 8 Problems/Problem 25

Revision as of 10:12, 15 July 2024 by Forest3g (talk | contribs) (Solution 2)

Problem

Everyday at school, Jo climbs a flight of $6$ stairs. Jo can take the stairs $1$, $2$, or $3$ at a time. For example, Jo could climb $3$, then $1$, then $2$. In how many ways can Jo climb the stairs?

$\textbf{(A)}\ 13 \qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 24$

Solution 1

A dynamics programming approach is quick and easy. The number of ways to climb one stair is $1$. There are $2$ ways to climb two stairs: $1$,$1$ or $2$. For 3 stairs, there are $4$ ways: ($1$,$1$,$1$) ($1$,$2$) ($2$,$1$) ($3$)

For four stairs, consider what step they came from to land on the fourth stair. They could have hopped straight from the 1st, done a double from #2, or used a single step from #3. The ways to get to each of these steps are $1+2+4=7$ ways to get to step 4. The pattern can then be extended: $4$ steps: $1+2+4=7$ ways. $5$ steps: $2+4+7=13$ ways. $6$ steps: $4+7+13=24$ ways.

Thus, there are $\boxed{\textbf{(E) } 24}$ ways to get to step $6.$

Video Solution by OmegaLearn

https://youtu.be/5UojVH4Cqqs?t=4560

~ pi_is_3.14

Video by MathTalks

https://youtu.be/mSCQzmfdX-g



See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png