2008 USAMO Problems/Problem 2
Problem
(Zuming Feng) Let be an acute, scalene triangle, and let
,
, and
be the midpoints of
,
, and
, respectively. Let the perpendicular bisectors of
and
intersect ray
in points
and
respectively, and let lines
and
intersect in point
, inside of triangle
. Prove that points
,
,
, and
all lie on one circle.
Contents
[hide]Solution
Solution 1 (synthetic)
Solution 4 (synthetic)
![[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(1,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(B--D(MP("D",D,NE,s))--MP("P",P,(-1,0),s)--D(MP("O",O,N,s))); D(D(MP("E",E,SW,s))--MP("N",N,(1,0),s)); D(C--D(MP("F",F,NW,s))); D(B--O--C,linetype("4 4")+linewidth(0.7)); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); D(anglemark(B,A,C)); MP("y",A,(0,-6));MP("z",A,(4,-6)); D(anglemark(B,F,C,4),linewidth(0.6));D(anglemark(B,O,C,4),linewidth(0.6)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); /* D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); */ [/asy]](http://latex.artofproblemsolving.com/4/5/1/451ccc6ddd63cc2a830a0fa3d574e674e83cd02b.png)
Without loss of generality . The intersection of
and
is
, the circumcenter of
.
Let and
. Note
lies on the perpendicular bisector of
, so
. So
. Similarly,
, so
. Notice that
intercepts the minor arc
in the circumcircle of
, which is double
. Hence
, so
is cyclic.
Lemma 1: is directly similar to
since
,
,
are collinear,
is cyclic, and
. Also
because
, and
is the medial triangle of
so
. Hence
.
Notice that since
.
. Then
Hence
.
Hence is similar to
by AA similarity. It is easy to see that they are oriented such that they are directly similar. End Lemma 1.
By the similarity in Lemma 1, .
so
by SAS similarity. Hence
Using essentially the same angle chasing, we can show that
is directly similar to
. It follows that
is directly similar to
. So
Hence
, so
is cyclic. In other words,
lies on the circumcircle of
. Note that
, so
is cyclic. In other words,
lies on the circumcircle of
.
,
,
,
, and
all lie on the circumcircle of
. Hence
,
,
, and
lie on a circle, as desired.
Solution 2 (isogonal conjugates)
![[asy] /* setup and variables */ size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(4,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(C--D(MP("E",E,NW,s))--MP("N",N,(1,0),s)--D(MP("O",O,SW,s))); D(D(MP("D",D,SE,s))--MP("P",P,W,s)); D(B--D(MP("F",F,s))); D(O--A--F,linetype("4 4")+linewidth(0.7)); D(MP("O'",circumcenter(A,P,N),NW,s)); D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); draw(p,circumcircle(A,B,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); [/asy]](http://latex.artofproblemsolving.com/e/f/4/ef48251bf50ebbfa10db0114d80f3a0f7efe3276.png)
Construct on
such that
. Then
. Then
, so
, or
. Then
, so
. Then we have
and
. So
and
are isogonally conjugate. Thus
. Then
.
If is the circumcenter of
then
so
is cyclic. Then
.
Then . Then
is a right triangle.
Now by the homothety centered at with ratio
,
is taken to
and
is taken to
. Thus
is taken to the circumcenter of
and is the midpoint of
, which is also the circumcenter of
, so
all lie on a circle.
Solution 3 (inversion)
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
![[asy] size(280); pathpen = black + linewidth(0.7); pointpen = black; pen s = fontsize(8); pair B=(0,0),C=(5,0),A=(4,4); /* A.x > C.x/2 */ /* construction and drawing */ pair P=(A+B)/2,M=(B+C)/2,N=(A+C)/2,D=IP(A--M,P--P+5*(P-bisectorpoint(A,B))),E=IP(A--M,N--N+5*(bisectorpoint(A,C)-N)),F=IP(B--B+5*(D-B),C--C+5*(E-C)),O=circumcenter(A,B,C); D(MP("A",A,(0,1),s)--MP("B",B,SW,s)--MP("C",C,SE,s)--A--MP("M",M,s)); D(C--D(MP("E",E,NW,s))--MP("N",N,(1,0),s)--D(MP("O",O,SW,s))); D(D(MP("D",D,SE,s))--MP("P",P,W,s)); D(B--D(MP("F",F,s))); D(O--A--F,linetype("4 4")+linewidth(0.7)); D(circumcircle(A,P,N),linetype("4 4")+linewidth(0.7)); D(rightanglemark(A,P,D,3.5));D(rightanglemark(A,N,E,3.5)); /* removal of code from original picture p = new picture; draw(p,circumcircle(B,O,C),linetype("1 4")+linewidth(0.7)); draw(p,circumcircle(A,B,C),linetype("1 4")+linewidth(0.7)); clip(p,B+(-5,0)--B+(-5,A.y+2)--C+(5,A.y+2)--C+(5,0)--cycle); add(p); */ [/asy]](http://latex.artofproblemsolving.com/b/c/5/bc53c75d65cb593334445604e2f6d994610f600b.png)
We consider an inversion by an arbitrary radius about . We want to show that
and
are collinear. Notice that
and
lie on a circle with center
, and similarly for the other side. We also have that
form a cyclic quadrilateral, and similarly for the other side. By angle chasing, we can prove that
is a parallelogram, indicating that
is the midpoint of
. Template:Incomplete
Solution 4 (trigonometric)
Use the Law of Sines to show that . It follows that
. Noting the spiral similarity from
to
, Template:Incomplete
Solution 5 (analytical)
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
2008 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
- <url>viewtopic.php?t=202907 Discussion on AoPS/MathLinks</url>