2001 AIME I Problems/Problem 7
Problem
Triangle has
,
and
. Points
and
are located on
and
, respectively, such that
is parallel to
and contains the center of the inscribed circle of triangle
. Then
, where
and
are relatively prime positive integers. Find
.
Solution
![[asy] pointpen = black; pathpen = black+linewidth(0.7); pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("I",I,NE)); D(MP("E",E,NE)--MP("D",D,NW)); D((A.x,0)--A,linetype("4 4")+linewidth(0.7)); D((I.x,0)--I,linetype("4 4")+linewidth(0.7)); D(rightanglemark(B,(A.x,0),A,30)); MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); [/asy]](http://latex.artofproblemsolving.com/3/0/8/308015d62aeb9917bd2a032c366423e1e0529c1f.png)
The semiperimeter of is
. By Heron's formula, the area of the whole triangle is
. Using the formula
, we find that the inradius is
. Since
, the ratio of the heights of triangles
and
is equal to the ratio between sides
and
. From
, we find
. Thus, we have

Solving for gives
so the answer is
.
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |