1997 AJHSME Problems/Problem 19

Revision as of 15:13, 31 July 2011 by Talkinaway (talk | contribs) (Created page with "==Problem== If the product <math>\dfrac{3}{2}\cdot \dfrac{4}{3}\cdot \dfrac{5}{4}\cdot \dfrac{6}{5}\cdot \ldots\cdot \dfrac{a}{b} = 9</math>, what is the sum of <math>a</math> a...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If the product $\dfrac{3}{2}\cdot \dfrac{4}{3}\cdot \dfrac{5}{4}\cdot \dfrac{6}{5}\cdot \ldots\cdot \dfrac{a}{b} = 9$, what is the sum of $a$ and $b$?

$\text{(A)}\ 11 \qquad \text{(B)}\ 13 \qquad \text{(C)}\ 17 \qquad \text{(D)}\ 35 \qquad \text{(E)}\ 37$

Solution

Notice that the numerator of the first fraction cancels out the denominator of the second fraction, and the numerator of the second fraction cancels out the denominator of the third fraction, and so on.

The only numbers left will be $a$ in the numerator from the last fraction and $2$ in the denominator from the first fraction. (The $b$ will cancel with the numerator of the preceeding number.) Thus, $\frac{a}{2} = 9$, and $a=18$.

Since the numerator is always one more than the denominator, $b = a-1 = 17$, and $a+ b = 18 + 17 = 35$, giving an answer of $\boxed{D}$


See also

1997 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions